Abstract

Manufacturing industry companies are increasingly interested in using less energy in order to enhance competitiveness and reduce environmental impact. To implement technologies and make decisions that lead to less energy demand, energy/power data are required. All too often, however, energy data are either not available, or available but too aggregated to be useful, or in a form that makes information difficult to access. Attention herein is focused on this last point. As a step toward greater energy information transparency and smart energy-monitoring systems, this paper introduces a novel, robust time series-based approach to automatically detect and analyze the electrical power cycles of manufacturing equipment. A new pattern recognition algorithm including a power peak clustering method is applied to a large real-life sensor data set of various machine tools. With the help of synthetic time series, it is shown that the accuracy of the cycle detection of nearly 100% is realistic, depending on the degree of measurement noise and the measurement sampling rate. Moreover, this paper elucidates how statistical load profiling of manufacturing equipment cycles as well as statistical deviation analyses can be of value for automatic sensor and process fault detection.

References

1.
Manyika
,
J.
,
Chui
,
M.
,
Bisson
,
P.
,
Woetzel
,
J.
,
Dobbs
,
R.
,
Bughin
,
J.
, and
Aharon
,
D.
,
2015
,
The Internet of Things: Mapping the Value Beyond the Hype
,
McKinsey Global Institute
,
Redwood City, CA
.
2.
Lee
,
W. J.
,
Wu
,
H.
,
Huang
,
A.
, and
Sutherland
,
J.W.
,
2019
, “
Learning via Acceleration Spectrograms of a DC Motor System with Application to Condition Monitoring.
Int. J. Adv. Manuf. Tech.
,
106
(
3–4
), pp.
803
816
. https://doi.org/10.1007/s00170-019-04563-8
3.
Jäger
,
G.
,
Zug
,
S.
,
Brade
,
T.
, and
Casimiro
,
A.
,
2018
, “
Generic Sensor Failure Modeling for Cooperative Systems
,”
Sensors
,
18
(
3
), pp.
1
31
. 10.3390/s18030925
4.
Li
,
L.
,
Huang
,
H.
,
Zhao
,
F.
,
Gao
,
M.
,
Liu
,
Z.
, and
Sutherland
,
J. W.
,
2019
, “
Power Measurement in Energy Efficient Manufacturing: Accuracy Analysis, Challenges, and Perspectives for Improvement
,”
Procedia CIRP
,
80
, pp.
138
143
. 10.1016/j.procir.2019.01.059
5.
Rong
,
K.
, and
Bailis
,
P.
,
2017
, “
ASAP: Prioritizing Attention via Time Series Smoothing
,”
Proc. VLDB Endowment
,
10
(
11
), pp.
1358
1369
. 10.14778/3137628.3137645
6.
Abele
,
E.
,
Panten
,
N.
, and
Menz
,
B.
,
2015
, “
Data Collection for Energy Monitoring Purposes and Energy Control of Production Machines
,”
Procedia CIRP
,
29
, pp.
299
304
. 10.1016/j.procir.2015.01.035
7.
Schlosser
,
F.
,
Seevers
,
J.-P.
,
Peesel
,
R.-H.
, and
Walmsley
,
T. G.
,
2019
, “
System Efficient Integration of Standby Control and Heat Pump Storage Systems in Manufacturing Processes
,”
Energy
,
181
(
C
), pp.
395
406
. 10.1016/j.energy.2019.05.113
8.
O'Driscoll
,
E.
,
Kelly
,
K.
, and
O'Donnell
,
G. E.
,
2015
, “
Intelligent Energy Based Status Identification as a Platform for Improvement of Machine Tool Efficiency and Effectiveness
,”
J. Cleaner Prod.
,
105
, pp.
184
195
. 10.1016/j.jclepro.2015.01.058
9.
Weiß
,
T.
,
Dunkelberg
,
H.
, and
Seevers
,
J.-P.
,
2019
, “
Signal Based Non-Intrusive Load Decomposition
,”
Procedia Manuf.
,
33
(
2019
), pp.
554
561
. 10.1016/j.promfg.2019.04.069
10.
Sossenheimer
,
J.
,
Walther
,
J.
,
Fleddermann
,
J.
, and
Abele
,
E.
,
2019
, “
A Sensor Reduced Machine Learning Approach for Condition-Based Energy Monitoring for Machine Tools
,”
Procedia CIRP
,
81
, pp.
570
575
. 10.1016/j.procir.2019.03.157
11.
Teiwes
,
H.
,
Blume
,
S.
,
Herrmann
,
C.
,
Rössinger
,
M.
, and
Thiede
,
S.
,
2018
, “
Energy Load Profile Analysis on Machine Level
,”
Procedia CIRP
,
69
, pp.
271
276
. 10.1016/j.procir.2017.11.073
12.
Oette
,
C.
,
Küfner
,
T.
,
Reger
,
A.
, and
Boehner
,
J.
,
2016
, “
Lean Data Services: Detection of Operating States in Energy Profiles of Intralogistics Systems by Using Big Data Analytics
,”
Appl. Mech. Mater.
,
856
, pp.
73
81
. www.scientific.net/AMM.856.73
13.
Vijayaraghavan
,
A.
, and
Dornfeld
,
D.
,
2010
, “
Automated Energy Monitoring of Machine Tools
,”
CIRP Ann.
,
59
(
1
), pp.
21
24
. 10.1016/j.cirp.2010.03.042
14.
Seevers
,
J.-P.
,
Johst
,
J.
,
Weiß
,
T.
,
Meschede
,
H.
, and
Hesselbach
,
J.
,
2019
, “
Automatic Time Series Segmentation as the Basis for Unsupervised, Non-Intrusive Load Monitoring of Machine Tools
,”
Procedia CIRP
,
81
, pp.
695
700
. 10.1016/j.procir.2019.03.178
15.
Labbus
,
I.
,
Teiwes
,
H.
,
Filz
,
M.-A.
,
Herrmann
,
C.
,
Gonter
,
M.
,
Rössinger
,
M.
, and
Thiede
,
S.
,
2019
, “
Automated Statistical Evaluation of Energy Data in the Automotive Production
,”
Procedia CIRP
,
81
, pp.
1154
1159
. 10.1016/j.procir.2019.03.284
16.
Pandit
,
S. M.
, and
Wu
,
S. M.
,
1973
, “
Characterization of Abrasive Tools by Continuous Time Series
,”
J. Eng. Ind.
,
95
(
3
), pp.
821
826
. 10.1115/1.3438232
17.
Duda
,
R. O.
,
Hart
,
P. E.
, and
Stork
,
D. G.
,
2012
,
Pattern Classification
, 2nd ed.,
Wiley-Interscience
,
Hoboken, NJ
.
18.
Keogh
,
E.
, and
Lin
,
J.
,
2005
, “
Clustering of Time-Series Subsequences Is Meaningless: Implications for Previous and Future Research
,”
Knowl. Inf. Syst.
,
8
(
2
), pp.
154
177
. 10.1007/s10115-004-0172-7
19.
Bagnall
,
A.
,
Lines
,
J.
,
Bostrom
,
A.
,
Large
,
J.
, and
Keogh
,
E.
,
2017
, “
The Great Time Series Classification Bake off: A Review and Experimental Evaluation of Recent Algorithmic Advances
,”
Data. Min. Knowl. Disc.
,
31
(
3
), pp.
606
660
. 10.1007/s10618-016-0483-9
20.
Linardi
,
M.
,
Zhu
,
Y.
,
Palpanas
,
T.
, and
Keogh
,
E.
,
2018
, “
Matrix Profile X
,”
Proceedings of the International Conference on Management of Data—SIGMOD ‘18
,
Houston, TX
,
June
, pp.
1053
1066
.
21.
Gao
,
Y.
, and
Lin
,
J.
,
2018
, “
Exploring Variable-Length Time Series Motifs in One Hundred Million Length Scale
,”
Data. Min. Knowl. Disc.
,
32
(
5
), pp.
1200
1228
. 10.1007/s10618-018-0570-1
22.
Vlachos
,
M.
,
Yu
,
P.
, and
Castelli
,
V.
,
2005
, “
On Periodicity Detection and Structural Periodic Similarity
,”
Proceedings of the 2005 SIAM International Conference on Data Mining
,
Bethesda, MD
,
April
, pp.
449
460
.
23.
Parthasarathy
,
S.
,
Mehta
,
S.
, and
Srinivasan
,
S.
,
2006
, “
Robust Periodicity Detection Algorithms
,”
Proceedings of the 15th ACM International Conference on Information and Knowledge Management
,
Arlington, VA
,
November
, pp.
874
875
.
24.
Otunba
,
R.
,
Lin
,
J.
, and
Senin
,
P.
,
2014
, “
MBPD: Motif-Based Period Detection
,”
Pacific-Asia Conference on Knowledge Discovery and Data Mining
,
Tainan, Taiwan
,
May
, pp.
793
804
.
25.
Rhudy
,
M.
,
2014
, “
Time Alignment Techniques for Experimental Sensor Data
,”
Int. J. Comput. Sci. Eng. Surv.
,
5
(
2
), pp.
1
14
. 10.5121/ijcses.2014.5201
26.
Vlachos
M.
,
Gunopulos
D.
, and
Das
G.
,
2005
, “Indexing Time-Series Under Conditions of Noise,”
Data mining in time series databases
, 1st ed.,
M.
Last
, ed.,
World Scientific
,
Singapore
, pp.
67
100
.
27.
DeVor
,
R. E.
,
Chang
,
T.-H.
, and
Sutherland
,
J. W.
,
2007
,
Statistical Quality Design and Control: Contemporary Concepts and Methods
,
Prentice Hall
,
Upper Saddle River, NJ
.
28.
Chiu
,
B.
,
Keogh
,
E.
, and
Lonardi
,
S.
,
2003
, “
Probabilistic Discovery of Time Series Motifs
,”
Proceedings of the Ninth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining
,
Washington, DC
,
August
, pp.
493
498
.
29.
Kuhrke
,
B.
, and
Abele
,
E.
,
2010
, “
Methodology to Assess the Energy Consumption of Cutting Machine Tools
,”
Proceedings of the 17th CIRP International Conference on Life Cycle Engineering
,
Hefei, China
,
May
, pp.
76
82
.
30.
Haapala
,
K. R.
,
Zhao
,
F.
,
Camelio
,
J.
,
Sutherland
,
J. W.
,
Skerlos
,
S. J.
,
Dornfeld
,
D. A.
,
Jawahir
I. S.
,
Clarens
A. F.
, and
Rickli
,
J. L.
,
2013
, “
A Review of Engineering Research in Sustainable Manufacturing
,”
ASME J. Manuf. Sci. Eng.
,
135
(
4
), p.
041013
. 10.1115/1.4024040
31.
Schmidt
,
C.
,
Li
,
W.
,
Thiede
,
S.
,
Kara
,
S.
, and
Herrmann
,
C.
,
2015
, “
A Methodology for Customized Prediction of Energy Consumption in Manufacturing Industries
,”
Int. J. Precis. Eng. Manuf. Green Technol.
,
2
(
2
), pp.
163
172
. 10.1007/s40684-015-0021-z
You do not currently have access to this content.