Abstract

Reentrant flow plays an important role for the allocation of limited resources in semiconductor manufacturing. In particular, over- or under-loading of workstations may deteriorate performances of the whole production line. Therefore, load balancing is usually accomplished with dispatching rules to balance the workload to enhance production performance. Focus on the realistic needs, a novel prediction-based dynamic scheduling method with a multi-layer perceptron (MLP) is proposed for load balancing. This study proposed MLP based on the simulation dataset of empirical industrial fabrication facilities as the prediction model. The prediction outputs incorporated into the dynamic dispatching rule (DDR) for optimal load balancing based on the queue length at each workstation, named as a dynamic scheduling method considering load balancing (DSMLB). Based on the validation, DSMLB compared with the state-of-the-art dispatching rules shows that DSMLB has improved the daily movement, equipment utilization (EU), throughput rate, and cycle time (CT).

References

References
1.
Zhong
,
H. S.
,
Liu
,
M.
,
Hao
,
J. H.
, and
Jiang
,
S. L.
,
2018
, “
An Operation-Group Based Soft Scheduling Approach for Uncertain Semiconductor Wafer Fabrication System
,”
IEEE Trans. Syst. Man Cybern.-Syst.
,
48
(
8
), pp.
1332
1347
. 10.1109/TSMC.2017.2669212
2.
Li
,
L.
, and
Min
,
Z. H.
,
2016
, “
An Efficient Adaptive Dispatching Method for Semiconductor Wafer Fabrication Facility
,”
Int. J. Adv. Manuf. Technol.
,
84
(
1
), pp.
315
325
. 10.1007/s00170-016-8410-1
3.
Yugma
,
C.
,
Dauzère-Pérès
,
S.
,
Artigues
,
C.
,
Derreumaux
,
A.
, and
Sibille
,
O.
,
2012
, “
A Batching and Scheduling Algorithm for the Diffusion Area in Semiconductor Manufacturing
,”
Int. J. Prod. Res.
,
50
(
8
), pp.
2118
2132
. 10.1080/00207543.2011.575090
4.
Wang
,
M.
,
Srivathsan
,
S.
,
Huang
,
E.
, and
Wu
,
K.
,
2018
, “
Job Dispatch Control for Production Lines With Overlapped Time Window Constraints
,”
IEEE Trans. Semicond. Manuf.
,
31
(
2
), pp.
206
214
. 10.1109/TSM.2018.2826530
5.
Lima
,
A.
,
Borodin
,
V.
,
Dauzdre-Pdrds
,
S.
, and
Vialletelle
,
P.
,
2017
, “
Analyzing Different Dispatching Policies for Probability Estimation in Time Constraint Tunnels in Semiconductor Manufacturing
,”
2017 Winter Simulation Conference (WSC 2017)
,
Las Vegas, NV
,
Dec. 3–6
, pp.
3543
3554
.
6.
Zhang
,
Q.
,
Grossmann
,
I. E.
, and
Moorthy
,
A. S.
,
2016
, “
Data Driven Construction of Convex Region Surrogate Models Optimization and Engineering
,”
Optim. Eng.
,
17
(
2
), pp.
289
332
.
7.
Ham
,
M.
,
Lee
,
Y. H.
, and
Fowler
,
J. W.
,
2009
, “
Integer Programming-Based Real-Time Scheduler in Semiconductor Manufacturing
,”
2009 Winter Simulation Conference (WSC2009)
,
Austin, TX
,
Dec. 13–16
, pp.
1657
1666
.
8.
Wang
,
I. L.
,
Yang
,
T.
, and
Chang
,
Y. B.
,
2012
, “
Scheduling Two-Stage Hybrid Flow Shops With Parallel Batch, Release Time, and Machine Eligibility Constraints
,”
J. Intell. Manuf.
,
23
(
6
), pp.
2271
2280
. 10.1007/s10845-011-0571-z
9.
Kim
,
S.
,
Lee
,
Y. H.
,
Yang
,
T.
, and
Park
,
N.
,
2008
, “
Robust Production Control Policies Considering WIP Balance and Setup Time in a Semiconductor Fabrication Line
,”
Int. J. Adv. Manuf. Technol.
,
39
(
3
), pp.
333
343
. 10.1007/s00170-007-1208-4
10.
Korytkowski
,
P.
,
Wiśniewski
,
T.
, and
Rymaszewski
,
S.
,
2013
, “
An Evolutionary Simulation-Based Optimization Approach for Dispatching Scheduling
,”
Simul. Modell. Pract. Theory
,
35
(
1
), pp.
69
85
. 10.1016/j.simpat.2013.03.006
11.
Qin
,
W.
,
Zhang
,
J.
, and
Sun
,
Y.
,
2013
, “
Dynamic Dispatching for Interbay Material Handling by Using Modified Hungarian Algorithm and Fuzzy-Logic-Based Control
,”
Int. J. Adv. Manuf. Technol.
,
67
(
1
), pp.
295
309
. 10.1007/s00170-013-4775-6
12.
Li
,
L.
,
Sun
,
Z. J.
,
Zhou
,
M. C.
, and
Qiao
,
F.
, 2013
, “
Adaptive Dispatching Rule for Semiconductor Wafer Fabrication Facility
,”
IEEE Trans. Autom. Sci. Eng.
,
10
(
2
), pp.
354
364
. 10.1109/TASE.2012.2221087
13.
Liu
,
M.
,
2009
, “
A Survey of Data-Based Production Scheduling Methods
,”
Acta Autom. Sin.
,
35
(
6
), pp.
785
801
. 10.3724/SP.J.1004.2009.00785
14.
Shiue
,
Y. R.
,
2010
, “
Data-Mining-Based Dynamic Dispatching Rule Selection Mechanism for Shop Floor Control Systems Using a Support Vector Machine Approach
,”
Int. J. Prod. Res.
,
47
(
13
), pp.
3669
3690
. 10.1080/00207540701846236
15.
Kumar
,
S.
, and
Rao
,
C. S. P.
,
2009
, “
Application of Ant Colony, Genetic Algorithm and Data Mining-Based Techniques for Scheduling
,”
Rob. Comput. Integr. Manuf.
,
25
(
6
), pp.
901
908
. 10.1016/j.rcim.2009.04.015
16.
Mönch
,
L.
,
Prause
,
M.
, and
Schmalfuss
,
V.
,
2001
, “
Simulation-Based Solution of Load-Balancing Problems in the Photolithography Area of a Semiconductor Wafer Fabrication Facility
,”
2001 Winter Simulation Conference (WSC2001)
,
Arlington, MA
,
Dec. 9–12
, pp.
1170
1177
.
17.
Shr
,
A. M. D.
,
Liu
,
A.
, and
Chen
,
P. P.
,
2006
,
A Heuristic Load Balancing Scheduling Method for Dedicated Machine Constraint. Advances in Applied Artificial Intelligence
,
Springer Berlin Heidelberg
.
18.
Chung
,
Y. H.
,
Cho
,
K. H.
, and
Park
,
S. C.
,
2016
, “
Dedication Load Based Dispatching Rule for Photolithograph Machines With Dedication Constraint
,”
2016 Winter Simulation Conference (WSC2016)
, pp.
2731
2739
.
19.
Assi
,
C.
,
Ayoubi
,
S.
,
Sebbah
,
S.
, and
Shaban
,
K.
,
2014
, “
Towards Scalable Traffic Management in Cloud Data Centers
,”
IEEE Trans. Commun.
,
62
(
3
), pp.
1033
1045
. 10.1109/TCOMM.2014.012614.130747
20.
Deshpande
,
S.
, and
Purwar
,
A.
,
2019
, “
A Machine Learning Approach to Kinematic Synthesis of Defect-Free Planar Four-Bar Linkages
,”
ASME J. Comput. Inf. Sci. Eng.
,
19
(
2
), p.
0210041
. 10.1115/1.4042325
21.
Hao
,
X.
,
Zhang
,
G. G.
, and
Ma
,
S.
,
2016
, “
Deep Learning
,”
Int. J. Semant. Comput.
,
10
(
3
), pp.
417
439
. 10.1142/S1793351X16500045
22.
Schmidhuber
,
J.
,
2015
, “
Deep Learning in Neural Networks: An Overview
,”
Neural Netw.
,
61
(
1
), pp.
85
117
. 10.1016/j.neunet.2014.09.003
23.
Dering
,
M. L.
,
Tucker
,
C. S.
, and
Kumara
,
S.
,
2018
, “
An Unsupervised Machine Learning Approach to Assessing Designer Performance During Physical Prototyping
,”
ASME J. Comput. Inf. Sci. Eng.
,
18
(
1
), p.
0110021
. 10.1115/1.4037434
24.
Patel
,
H.
,
Thakkar
,
A.
,
Pandya
,
M.
, and
Makwana
,
K.
,
2018
, “
Neural Network With Deep Learning Architectures
,”
J. Inf. Optim. Sci.
,
39
(
1
), pp.
31
38
. 10.1080/02522667.2017.1372908
25.
Gan
,
M.
,
Wang
,
C.
,
Zhu
,
C.
, and
Chang
,
A.
,
2016
, “
Construction of Hierarchical Diagnosis Network Based on Deep Learning and Its Application in the Fault Pattern Recognition of Rolling Element Bearings
,”
Mech. Syst. Signal Process.
,
72
(
1
), pp.
92
104
. 10.1016/j.ymssp.2015.11.014
26.
Ghosh
,
D.
,
Olewnik
,
A.
, and
Lewis
,
K.
,
2018
, “
Application of Feature-Learning Methods Toward Product Usage Context Identification and Comfort Prediction
,”
ASME J. Comput. Inf. Sci. Eng.
,
18
(
1
), p.
011004
. 10.1115/1.4037435
27.
Tang
,
J.
,
Deng
,
C.
, and
Huang
,
G.
,
2016
, “
Extreme Learning Machine for Multilayer Perceptron
,”
IEEE Trans. Neural Netw. Learn. Syst.
,
27
(
4
), pp.
809
821
. 10.1109/TNNLS.2015.2424995
28.
Gu
,
J.
,
Wang
,
Z.
,
Kuen
,
J.
,
Ma
,
L.
,
Shahroudy
,
A.
,
Shuai
,
B.
,
Liu
,
T.
,
Wang
,
X.
,
Wang
,
G.
,
Cai
,
J.
, and
Chen
,
T.
,
2018
, “
Recent Advances in Convolutional Neural Networks
,”
Pattern Recogn.
,
77
(
1
), pp.
354
377
. 10.1016/j.patcog.2017.10.013
29.
Greff
,
K.
,
Srivastava
,
R. K.
,
Koutnik
,
J.
,
Steunebrink
,
B. R.
, and
Schmidhuber
,
J.
,
2017
, “
LSTM: A Search Space Odyssey
,”
IEEE Trans. Neural Netw. Learn. Syst.
,
28
(
10
), pp.
2222
2232
. 10.1109/TNNLS.2016.2582924
30.
Chen
,
L. C.
,
Papandreou
,
G.
,
Kokkinos
I.
,
Murphy
K.
, and
Yuille
,
A. L.
,
2018
, “
DeepLab: Semantic Image Segmentation With Deep Convolutional Nets, Atrous Convolution, and Fully Connected CRFs
,”
IEEE Trans. Pattern Anal. Mach. Intell.
,
40
(
4
), pp.
834
848
. 10.1109/TPAMI.2017.2699184
31.
Zhang
,
C.
,
Pan
,
X.
,
Li
,
H.
,
Gardiner
,
A.
,
Sargent
,
I.
,
Hare
,
J.
, and
Atkinson
,
P. M.
,
2018
, “
A Hybrid MLP-CNN Classifier for Very Fine Resolution Remotely Sensed Image Classification
,”
ISPRS J. Photogramm. Remote Sens.
,
140
(
1
), pp.
133
144
. 10.1016/j.isprsjprs.2017.07.014
32.
Pham
,
B. T.
,
Tien Bui
,
D.
,
Pourghasemi
,
H. R.
,
Indra
P.
, and
Dholakia
,
M. B.
,
2017
, “
Landslide Susceptibility Assesssment in the Uttarakhand Area (India) Using GIS: A Comparison Study of Prediction Capability of Naive Bayes, Multilayer Perceptron Neural Networks, and Functional Trees Methods
,”
Theor. Appl. Climatol.
,
128
(
1–2
), pp.
255
273
. 10.1007/s00704-015-1702-9
33.
Pham
,
B. T.
,
Tien Bui
,
D.
,
Prakash
,
I.
, and
Dholakia
,
M. B.
,
2017
, “
Hybrid Integration of Multilayer Perceptron Neural Networks and Machine Learning Ensembles for Landslide Susceptibility Assessment at Himalayan Area (India) Using GIS
,”
Catena
,
149
(
1
), pp.
52
63
. 10.1016/j.catena.2016.09.007
34.
Tien Bui
,
D.
,
Tuan
,
T. A.
,
Klempe
,
H.
,
Pradhan
,
B.
, and
Revhaug
,
I.
,
2016
, “
Spatial Prediction Models for Shallow Landslide Hazards: A Comparative Assessment of the Efficacy of Support Vector Machines, Artificial Neural Networks, Kernel Logistic Regression, and Logistic Model Tree
,”
Landslides
,
13
(
2
), pp.
361
378
. 10.1007/s10346-015-0557-6
35.
Bhati
,
D.
,
Sharma
,
M.
,
Pachori
,
R. B.
, and
Gadre
,
V. M.
,
2017
, “
Time-frequency Localized Three-Band Biorthogonal Wavelet Filter Bank Using Semidefinite Relaxation and Nonlinear Least Squares With Epileptic Seizure EEG Signal Classification
,”
Digital Signal Process.
,
62
(
1
), pp.
259
273
. 10.1016/j.dsp.2016.12.004
36.
Hemmat Esfe
,
M.
,
Yan
,
W. M.
,
Afrand
,
M.
,
Sarraf
,
M.
,
Toghraie
,
D.
, and
Dahari
,
M.
,
2016
, “
Estimation of Thermal Conductivity of Al2O3/Water (40%)-Ethylene Glycol (60%) by Artificial Neural Network and Correlation Using Experimental Data
,”
Int. Commun. Heat Mass Transfer
,
74
(
1
), pp.
125
128
. 10.1016/j.icheatmasstransfer.2016.02.002
37.
Feng
,
X.
,
Li
,
Q.
,
Zhu
,
Y.
,
Hou
,
J.
,
Jin
,
L.
, and
Wang
,
J.
,
2015
, “
Artificial Neural Networks Forecasting of PM2.5 Pollution Using Air Mass Trajectory Based Geographic Model and Wavelet Transformation
,”
Atmos. Environ.
,
107
(
1
), pp.
118
128
. 10.1016/j.atmosenv.2015.02.030
38.
Gholami
,
V.
,
Chau
,
K. W.
,
Fadaee
,
F.
,
Torkaman
,
J.
, and
Ghaffari
,
A.
,
2015
, “
Modeling of Groundwater Level Fluctuations Using Dendrochronology in Alluvial Aquifers
,”
J. Hydrol.
,
529
(
1
), pp.
1060
1069
. 10.1016/j.jhydrol.2015.09.028
39.
Sakavicius
,
S.
,
Plonis
,
D.
, and
Serackis
,
A.
,
2017
, “
Single Sound Source Localization Using Multi-Layer Perceptron
,”
2017 Open Conference of Electrical, Electronic and Information Sciences
,
Vilnius, Lithuania
,
Apr. 27
.
40.
Syed-Mustafa
,
A.
, and
Kumara-Swamy
,
Y. S.
,
2015
, “
Web Service Classification Using Multi-Layer Perceptron Optimized With Tabu Search
,”
2015 IEEE International Advanced Computing Conference (IACC2015)
,
Coimbatore, India
,
Jan. 5–7
, pp.
1
4
.
41.
Namdari
,
A.
, and
Li
,
Z. S.
,
2018
, “
Integrating Fundamental and Technical Analysis of Stock Market Through Multi-Layer Perceptron
,”
2018 IEEE Technology and Engineering Management Conference (TEMSCON2018)
, pp.
1
6
.
42.
Plonis
,
D.
,
Katkevičius
,
A.
,
Urbanavičius
,
V.
,
Miniotas
,
D.
,
Serackis
,
A.
, and
Gurskas
,
A.
,
2018
, “
Delay Systems Synthesis Using Multi-Layer Perceptron Network
,”
Acta Phys. Pol. A
,
133
(
5
), pp.
1281
1286
. 10.12693/APhysPolA.133.1281
43.
Kolbusz
,
J.
, and
Rozycki
,
P.
,
2017
, “
The Study of Architecture MLP With Linear Neurons in Order to Eliminate the “Vanishing Gradient” Problem
,”
16th International Conference on Artificial Intelligence and Soft Computing (ICAISC2017)
,
Zakopane, Poland
,
June 11–15
, pp.
97
106
.
You do not currently have access to this content.