Abstract

A cyber-physical system (CPS) is one of the key technologies of industry 4.0. It is an integrated system that merges computing, sensors, and actuators, controlled by computer-based algorithms that integrate people and cyberspace. However, CPS performance is limited by its computational complexity. Finding a way to implement CPS with reduced complexity while incorporating more efficient diagnostics, forecasting, and equipment health management in a real-time performance remains a challenge. Therefore, the study proposes an integrative machine-learning method to reduce the computational complexity and to improve the applicability as a virtual subsystem in the CPS environment. This study utilizes random forest (RF) and a time-series deep-learning model based on the long short-term memory (LSTM) networking to achieve real-time monitoring and to enable the faster corrective adjustment of machines. We propose a method in which a fault detection alarm is triggered well before a machine fails, enabling shop-floor engineers to adjust its parameters or perform maintenance to mitigate the impact of its shutdown. As demonstrated in two empirical studies, the proposed method outperforms other times-series techniques. Accuracy reaches 80% or higher 3 h prior to real-time shutdown in the first case, and a significant improvement in the life of the product (281%) during a particular process appears in the second case. The proposed method can be applied to other complex systems to boost the efficiency of machine utilization and productivity.

References

References
1.
Oliff
,
H.
, and
Liu
,
Y.
,
2017
, “
Towards Industry 4.0 Utilizing Data-Mining Techniques: A Case Study on Quality Improvement
,”
Procedia CIRP
,
63
, pp.
167
172
. 10.1016/j.procir.2017.03.311
2.
Almada-Lobo
,
F.
,
2016
, “
The Industry 4.0 Revolution and the Future of Manufacturing Execution Systems (MES)
,”
J. Innov. Manage.
,
3
(
4
), pp.
16
21
. 10.24840/2183-0606_003.004_0003
3.
Leitão
,
P.
,
Colombo
,
A. W.
, and
Karnouskos
,
S.
,
2016
, “
Industrial Automation Based on Cyber-Physical Systems Technologies: Prototype Implementations and Challenges
,”
Comput. Ind.
,
81
, pp.
11
25
. 10.1016/j.compind.2015.08.004
4.
Post
,
T.
,
Ilsen
,
R.
,
Hamann
,
B.
,
Hagen
,
H.
, and
Aurich
,
J. C.
,
2017
, “
User-guided Visual Analysis of Cyber-Physical Production Systems
,”
ASME J. Comput. Inf. Sci. Eng.
,
17
(
2
), p.
021005
. 10.1115/1.4034872
5.
Wang
,
S.
,
Wan
,
J.
,
Li
,
D.
, and
Zhang
,
C.
,
2016
, “
Implementing Smart Factory of Industrie 4.0: An Outlook
,”
Int. J. Distrib. Sens. Netw.
,
12
(
1
), p.
3159805
. 10.1155/2016/3159805
6.
Trappey
,
A. J.
,
Trappey
,
C. V.
,
Govindarajan
,
U. H.
,
Sun
,
J. J.
, and
Chuang
,
A. C.
,
2016
, “
A Review of Technology Standards and Patent Portfolios for Enabling Cyber-Physical Systems in Advanced Manufacturing
,”
IEEE Access
,
4
, pp.
7356
7382
. 10.1109/ACCESS.2016.2619360
7.
Kagermann
,
H.
,
Helbig
,
J.
,
Hellinger
,
A.
, and
Wahlster
,
W.
,
2013
, “
Recommendations for Implementing the Strategic Initiative Industrie 4.0: Securing the Future of German Manufacturing Industry
,”
Final Report of the Industrie 4.0 Working Group. Forschungsunion
.
8.
Brettel
,
M.
,
Friederichsen
,
N.
,
Keller
,
M.
, and
Rosenberg
,
M.
,
2014
, “
How Virtualization, Decentralization and Network Building Change the Manufacturing Landscape: An Industry 4.0 Perspective
,”
Int. J. Mech., Ind. Sci. Eng.
,
8
(
1
), pp.
37
44
.
9.
Lasi
,
H.
,
Fettke
,
P.
,
Kemper
,
H. G.
,
Feld
,
T.
, and
Hoffmann
,
M.
,
2014
, “
Industry 4.0
,”
Bus. Infor. Syst. Eng.
,
6
(
4
), pp.
239
242
. 10.1007/s12599-014-0334-4
10.
Ivanov
,
D.
,
Dolgui
,
A.
,
Sokolov
,
B.
,
Werner
,
F.
, and
Ivanova
,
M.
,
2016
, “
A Dynamic Model and an Algorithm for Short-Term Supply Chain Scheduling in the Smart Factory Industry 4.0
,”
Int. J. Prod. Res.
,
54
(
2
), pp.
386
402
. 10.1080/00207543.2014.999958
11.
Mourtzis
,
D.
,
Milas
,
N.
, and
Vlachou
,
A.
,
2018
, “
An Internet of Things-Based Monitoring System for Shop-Floor Control
,”
ASME J. Comput. Inf. Sci. Eng.
,
18
(
2
), p.
021005
. 10.1115/1.4039429
12.
Loskyll
,
M.
,
Heck
,
I.
,
Schlick
,
J.
, and
Schwarz
,
M.
,
2012
, “
Context-Based Orchestration for Control of Resource-Efficient Manufacturing Processes
,”
Future Internet
,
4
(
3
), pp.
737
761
. 10.3390/fi4030737
13.
Monostori
,
L.
,
Kádár
,
B.
,
Bauernhansl
,
T.
,
Kondoh
,
S.
,
Kumara
,
S.
,
Reinhart
,
G.
,
Sauer
,
O.
,
Schuh
,
G.
,
Sihn
,
W.
, and
Ueda
,
K.
,
2016
, “
Cyber-Physical Systems in Manufacturing
,”
CIRP Ann.
,
65
(
2
), pp.
621
641
. 10.1016/j.cirp.2016.06.005
14.
Krotofil
,
M.
, and
Cárdenas
,
A. A.
,
2013
, “
Resilience of process control systems to cyber-physical attacks
,”
Nordic Conference on Secure IT Systems
,
Berlin, Heidelberg
,
Oct. 18–21
, pp.
166
182
.
15.
Kopetz
,
H.
,
2011
,
Real-Time Systems: Design Principles for Distributed Embedded Applications
,
Springer Science & Business Media
,
Boston, MA
.
16.
Lee
,
J.
,
Bagheri
,
B.
, and
Kao
,
H. A.
,
2015
, “
A Cyber-Physical Systems Architecture for Industry 4.0-Based Manufacturing Systems
,”
Manuf. Lett.
,
3
, pp.
18
23
. 10.1016/j.mfglet.2014.12.001
17.
Kulvatunyou
B. S.
,
Ivezic
,
N.
, and
Srinivasan
,
V.
,
2016
, “
On Architecting and Composing Engineering Information Services to Enable Smart Manufacturing
,”
ASME J. Comput. Inf. Sci. Eng.
,
16
(
3
), p.
031002
. 10.1115/1.4033725
18.
Wang
,
S.
,
Wan
,
J.
,
Zhang
,
D.
,
Li
,
D.
, and
Zhang
,
C.
,
2016
, “
Towards Smart Factory for Industry 4.0: A Self-Organized Multi-Agent System With Big Data Based Feedback and Coordination
,”
Compu. Networks
,
101
, pp.
158
168
. 10.1016/j.comnet.2015.12.017
19.
Zhang
,
Y.
,
Guo
,
Z.
,
Lv
,
J.
, and
Liu
,
Y.
,
2018
, “
A Framework for Smart Production-Logistics Systems Based on CPS and Industrial IoT
,”
IEEE Trans. Ind. Inf.
,
14
(
9
), pp.
4019
4032
. 10.1109/TII.2018.2845683
20.
Nikolakis
,
N.
,
Alexopoulos
,
K.
,
Xanthakis
,
E.
, and
Chryssolouris
,
G.
,
2019
, “
The Digital Twin Implementation for Linking the Virtual Representation of Human-Based Production Tasks to Their Physical Counterpart in the Factory-Floor
,”
Int. J. Computer Integr. Manuf.
,
32
(
1
), pp.
1
12
. 10.1080/0951192X.2018.1529430
21.
Kim
,
D.
,
Han
,
S. C.
,
Lin
,
Y.
,
Kang
,
B. H.
, and
Lee
,
S.
,
2018
, “
RDR-Based Knowledge Based System to the Failure Detection in Industrial Cyber Physical Systems
,”
Knowledge-Based Syst.
,
150
, pp.
1
13
. 10.1016/j.knosys.2018.02.009
22.
Muñoz-Romero
,
S.
,
Gómez-Verdejo
,
V.
, and
Parrado-Hernández
,
E.
,
2017
, “
A Novel Framework for Parsimonious Multivariate Analysis
,”
Pattern Recognit.
,
71
, pp.
173
186
. 10.1016/j.patcog.2017.06.004
23.
Ma
,
X.
,
Zuo
,
H.
,
Tian
,
M.
,
Zhang
,
L.
,
Meng
,
J.
,
Zhou
,
X.
,
Min
,
N.
,
Chang
,
X.
, and
Liu
,
Y.
,
2016
, “
Assessment of Heavy Metals Contamination in Sediments From Three Adjacent Regions of the Yellow River Using Metal Chemical Fractions and Multivariate Analysis Techniques
,”
Chemosphere
,
144
, pp.
264
272
. 10.1016/j.chemosphere.2015.08.026
24.
Tu
,
Y. K.
,
Kellett
,
M.
,
Clerehugh
,
V.
, and
Gilthorpe
,
M. S.
,
2005
, “
Problems of Correlations Between Explanatory Variables in Multiple Regression Analyses in the Dental Literature
,”
Br. Dent. J.
,
199
(
7
), pp.
457
461
. 10.1038/sj.bdj.4812743
25.
Srivastava
,
S.
,
Engelhardt
,
B. E.
, and
Dunson
,
D. B.
,
2017
, “
Expandable Factor Analysis
,”
Biometrika
,
104
(
3
), pp.
649
663
. 10.1093/biomet/asx030
26.
Niu
,
X.
,
Liu
,
G.
,
Huo
,
L.
,
Zhang
,
J.
,
Bai
,
M.
,
Peng
,
Y.
, and
Zhang
,
Z.
,
2018
, “
Risk Stratification Based on Components of the Complete Blood Count in Patients with Acute Coronary Syndrome: A Classification and Regression Tree Analysis
,”
Sci. Rep.
,
8
(
1
), p.
2838
. 10.1038/s41598-018-21139-w
27.
Loh
,
W. Y.
,
2011
, “
Classification and Regression Trees
,”
Wiley Interdiscip. Rev. Data Mining Knowl. Discov.
,
1
(
1
), pp.
14
23
. 10.1002/widm.8
28.
Genuer
,
R.
,
Poggi
,
J. M.
, and
Tuleau-Malot
,
C.
,
2010
, “
Variable Selection Using Random Forests
,”
Pattern Recognit. Lett.
,
31
(
14
), pp.
2225
2236
. 10.1016/j.patrec.2010.03.014
29.
Breiman
,
L.
,
2001
, “
Random Forests
,”
Mac. Learn.
,
45
(
1
), pp.
5
32
. 10.1023/A:1010933404324
30.
Chiu
,
M.-C.
, and
Ko
,
L.-W.
,
2017
, “
Develop a Personalized Intelligent Music Selection System Based on Heart Rate Variability and Machine Learning
,”
Multimedia Tools Appl.
,
76
(
14
), pp.
15607
15639
. 10.1007/s11042-016-3860-x
31.
Xie
,
T.
,
Jiang
,
P.
,
Zhou
,
Q.
,
Shu
,
L.
,
Zhang
,
Y.
,
Meng
,
X.
, and
Wei
,
H.
,
2018
, “
Advanced Multi-Objective Robust Optimization Under Interval Uncertainty Using Kriging Model and Support Vector Machine
,”
ASME J. Comput. Inf. Sci. Eng.
,
18
(
4
), p.
041012
. 10.1115/1.4040710
32.
Chen
,
C.
,
Liu
,
Y.
,
Kumar
,
M.
,
Qin
,
J.
, and
Ren
,
Y.
,
2019
, “
Energy Consumption Modelling Using Deep Learning Embedded Semi-Supervised Learning
,”
Comput. Ind. Eng.
,
135
, pp.
757
765
. 10.1016/j.cie.2019.06.052
33.
Baydar
,
C. M.
, and
Saitou
,
K.
,
2001
, “
Prediction and Diagnosis of Propagated Errors in Assembly Systems Using Virtual Factories
,”
ASME J. Comput. Inf. Sci. Eng.
,
1
(
3
), pp.
261
265
. 10.1115/1.1411966
34.
Wan
,
X. J.
,
Liu
,
L.
,
Xu
,
Z.
, and
Xu
,
Z.
,
2019
, “
Gearbox Fault Diagnosis Based on Selective Integrated Soft Competitive Learning Fuzzy Adaptive Resonance Theory
,”
ASME J. Comput. Inf. Sci. Eng.
,
19
(
1
), p.
011008
. 10.1115/1.4041776
35.
Swischuk
,
R. C.
, and
Allaire
,
D. L.
,
2019
, “
A Machine Learning Approach to Aircraft Sensor Error Detection and Correction
,”
ASME J. Comput. Inf. Sci. Eng.
,
19
(
4
), p.
041009
. 10.1115/1.4043567
36.
Abdallah
,
I.
,
Dertimanis
,
V.
,
Mylonas
,
H.
,
Tatsis
,
K.
,
Chatzi
,
E.
,
Dervilis
,
N.
,
Worden
,
K.
, and
Maguire
,
E.
,
2018
,
Safety and Reliability–Safe Societies in a Changing World
,
S.
Haugen
,
A.
Barros
,
C.
van Gulijk
,
T.
Kongsvik
, and
J. E.
Vinnem
, eds.,
CRC Press
,
London
, pp.
3053
3061
.
37.
Deshpande
,
S.
, and
Purwar
,
A.
,
2019
, “
A Machine Learning Approach to Kinematic Synthesis of Defect-Free Planar Four-Bar Linkages
,”
ASME J. Comput. Inf. Sci. Eng.
,
19
(
2
), p.
021004
. 10.1115/1.4042325
38.
Patel
,
A.
,
Andrews
,
P.
,
Summers
,
J. D.
,
Harrison
,
E.
,
Schulte
,
J.
, and
Mears
,
M. L.
,
2017
, “
Evaluating the Use of Artificial Neural Networks and Graph Complexity to Predict Automotive Assembly Quality Defects
,”
ASME J. Comput. Inf. Sci. Eng.
,
17
(
3
), p.
031017
. 10.1115/1.4037179
39.
Kohzadi
,
N.
,
Boyd
,
M. S.
,
Kermanshahi
,
B.
, and
Kaastra
,
I.
,
1996
, “
A Comparison of Artificial Neural Network and Time Series Models for Forecasting Commodity Prices
,”
Neurocomputing
,
10
(
2
), pp.
169
181
. 10.1016/0925-2312(95)00020-8
40.
Majaj
,
N. J.
, and
Pelli
,
D. G.
,
2018
, “
Deep Learning—Using Machine Learning to Study Biological Vision
,”
J. Vision
,
18
(
13
), p.
2
. 10.1167/18.13.2
41.
Yuan
,
Q.
, and
Wei
,
S.
,
2018
, “
Aligning Network Traffic for Serial Consistency and Anomalies with A Customized LSTM Model
,”
The 2018 IEEE International Conference on Progress in Informatics and Computing
,
China
, pp.
322
326
.
42.
Wang
,
Y.
,
Shen
,
Y.
,
Mao
,
S.
,
Chen
,
X.
, and
Zou
,
H.
,
2018
, “
LASSO & LSTM Integrated Temporal Model for Short-Term Solar Intensity Forecasting
,”
IEEE Internet Things J.
,
6
(
2
), pp.
2933
2944
. 10.1109/JIOT.2018.2877510
43.
Liaw
,
A.
, and
Wiener
,
M.
,
2002
, “
Classification and Regression by Random Forest
,”
R News
,
2
(
3
), pp.
18
22
.
44.
Hochreiter
,
S.
, and
Schmidhuber
,
J.
,
1997
, “
Long Short-Term Memory
,”
Neural Comput.
,
9
(
8
), pp.
1735
1780
. 10.1162/neco.1997.9.8.1735
45.
Leinweber
,
D. J.
,
2007
, “
Stupid Data Miner Tricks: Overfitting the S&P 500
,”
J. Investing
,
16
(
1
), pp.
15
22
. 10.3905/joi.2007.681820
46.
Flor
,
D.
,
Bell
,
S.
, and
Zimmermann
,
N.
,
2018
, “
Key Variables and Policy Test to Increase Water Efficiency in Households in London: A System Dynamics Approach
,”
Proceedings of the XVI Latin American Congress of Systems Dynamics
,
Mexico
.
47.
Zhao
,
H.
,
Sun
,
S.
, and
Jin
,
B.
,
2018
, “
Sequential Fault Diagnosis Based on LSTM Neural Network
,”
IEEE Access
,
6
, pp.
12929
12939
. 10.1109/ACCESS.2018.2794765
48.
Lin
,
J.
,
Su
,
L.
,
Yan
,
Y.
,
Sheng
,
G.
,
Xie
,
D.
, and
Jiang
,
X.
,
2018
, “
Prediction Method for Power Transformer Running State Based on LSTM_DBN Network
,”
Energies
,
11
(
7
), p.
1880
. 10.3390/en11071880
49.
Lv
,
M.
,
Yu
,
W.
,
Lv
,
Y.
,
Cao
,
J.
, and
Huang
,
W.
,
2019
, “
An Integral Sliding Mode Observer for CPS Cyber Security Attack Detection
,”
Interdiscip. J. Nonlinear Sci.
,
29
(
4
), p.
043120
. 10.1063/1.5092637
50.
Kwon
,
C.
, and
Hwang
,
I.
,
2018
, “
Reachability Analysis for Safety Assurance of Cyber-Physical Systems Against Cyber Attacks
,”
IEEE Trans. Autom. Control
,
63
(
7
), pp.
2272
2279
. 10.1109/TAC.2017.2761762
51.
Nikolakis
,
N.
,
Maratos
,
V.
, and
Makris
,
S.
,
2019
, “
A Cyber Physical System (CPS) Approach for Safe Human-Robot Collaboration in a Shared Workplace
,”
Rob. Comput. Integr. Manuf.
,
56
, pp.
233
243
. 10.1016/j.rcim.2018.10.003
52.
Chiu
,
M.-C.
,
Chu
,
C.-Y.
, and
Chen
,
C.-C.
,
2018
, “
An Integrated Product Service System Modelling Methodology With a Case Study of Clothing Industry
,”
Int. J. Prod. Res.
,
58
(
6
), pp.
2388
2409
. 10.1080/00207543.2017.1374570
53.
Hsiao
,
W.-B.
,
Chiu
,
M.-C.
,
Chen
,
W.-F.
, and
Chu
,
C.-Y.
,
2016
, “
A Systematic Service Design Methodology to Achieve Mass Personalisation
,”
Int. J. Agile Syst. Manage.
,
8
(
3/4
), pp.
243
263
. 10.1504/IJASM.2015.073520
You do not currently have access to this content.