Abstract

3D printing has been extensively used for rapid prototyping as well as low-volume production in aerospace, automotive, and medical industries. However, conventional manufacturing processes (i.e., injection molding and CNC machining) are more economical than 3D printing for high-volume mass production. In addition, current 3D printing techniques are not capable of fabricating large components due to the limited build size of commercially available 3D printers. To increase 3D printing throughput and build volume, a novel cooperative 3D printing technique has been recently introduced. Cooperative 3D printing is an additive manufacturing process where individual mobile 3D printers collaborate on printing a part simultaneously, thereby increasing printing speed and build volume. While cooperative 3D printing has the potential to fabricate larger components more efficiently, the mechanical properties of the components fabricated by cooperative 3D printing have not been systematically characterized. This paper aims to develop a data-driven predictive model that predicts the tensile strength of the components fabricated by cooperative 3D printing. Experimental results have shown that the predictive model is capable of predicting tensile strength as well as identifying the significant factors that affect the tensile strength.

References

References
1.
Li
,
L.
,
Tirado
,
A.
,
Nlebedim
,
I.
,
Rios
,
O.
,
Post
,
B.
,
Kunc
,
V.
,
Lowden
,
R.
,
Lara-Curzio
,
E.
,
Fredette
,
R.
, and
Ormerod
,
J.
,
2016
, “
Big Area Additive Manufacturing of High Performance Bonded NdFeB Magnets
,”
Sci. Rep.
,
6
(
1
), p.
36212
. 10.1038/srep36212
2.
Duty
,
C. E.
,
Kunc
,
V.
,
Compton
,
B.
,
Post
,
B.
,
Erdman
,
D.
,
Smith
,
R.
,
Lind
,
R.
,
Lloyd
,
P.
, and
Love
,
L.
,
2017
, “
Structure and Mechanical Behavior of Big Area Additive Manufacturing (BAAM) Materials
,”
Rapid Prototyping J.
,
23
(
1
), pp.
181
189
. 10.1108/RPJ-12-2015-0183
3.
McPherson
,
J.
, and
Zhou
,
W.
,
2018
, “
A Chunk-Based Slicer for Cooperative 3D Printing
,”
Rapid Prototyping J.
,
24
(
9
), pp.
1436
1446
. 10.1108/RPJ-07-2017-0150
4.
Melenka
,
G. W.
,
Cheung
,
B. K.
,
Schofield
,
J. S.
,
Dawson
,
M. R.
, and
Carey
,
J. P.
,
2016
, “
Evaluation and Prediction of the Tensile Properties of Continuous Fiber-Reinforced 3D Printed Structures
,”
Compos. Struct.
,
153
, pp.
866
875
. 10.1016/j.compstruct.2016.07.018
5.
Hayes
,
B. J.
,
Martin
,
B. W.
,
Welk
,
B.
,
Kuhr
,
S. J.
,
Ales
,
T. K.
,
Brice
,
D. A.
,
Ghamarian
,
I.
,
Baker
,
A. H.
,
Haden
,
C. V.
, and
Harlow
,
D. G.
,
2017
, “
Predicting Tensile Properties of Ti-6Al-4V Produced Via Directed Energy Deposition
,”
Acta Mater.
,
133
, pp.
120
133
. 10.1016/j.actamat.2017.05.025
6.
Tapia
,
G.
,
Elwany
,
A.
, and
Sang
,
H.
,
2016
, “
Prediction of Porosity in Metal-Based Additive Manufacturing Using Spatial Gaussian Process Models
,”
Addit. Manuf.
,
12
, pp.
282
290
. 10.1016/j.addma.2016.05.009
7.
Campoli
,
G.
,
Borleffs
,
M.
,
Yavari
,
S. A.
,
Wauthle
,
R.
,
Weinans
,
H.
, and
Zadpoor
,
A. A.
,
2013
, “
Mechanical Properties of Open-Cell Metallic Biomaterials Manufactured Using Additive Manufacturing
,”
Mater. Des.
,
49
, pp.
957
965
. 10.1016/j.matdes.2013.01.071
8.
Mukherjee
,
T.
,
Zhang
,
W.
, and
DebRoy
,
T.
,
2017
, “
An Improved Prediction of Residual Stresses and Distortion in Additive Manufacturing
,”
Comput. Mater. Sci.
,
126
, pp.
360
372
. 10.1016/j.commatsci.2016.10.003
9.
Poudel
,
L.
,
Sha
,
Z.
, and
Zhou
,
W.
,
2018
, “
Mechanical Strength of Chunk-Based Printed Parts for Cooperative 3D Printing
,”
Proc. Manuf.
,
26
, pp.
962
972
. 10.1016/j.promfg.2018.07.123
10.
Hunt
,
G.
,
Mitzalis
,
F.
,
Alhinai
,
T.
,
Hooper
,
P. A.
, and
Kovac
,
M.
,
2014
, “
3D Printing with Flying Robots
,”
Proceedings of the IEEE International Conference on Robotics and Automation (ICRA)
,
Hong Kong, China
,
May 31–June 7
,
IEEE
,
New York
, pp.
4493
4499
.
11.
Tibshirani
,
R.
,
1996
, “
Regression Shrinkage and Selection via the Lasso
,”
J. Royal Stat. Soc.: Series B (Methodological)
,
58
(
1
), pp.
267
288
. 10.1111/j.2517-6161.1996.tb02080.x
12.
Vapnik
,
V.
,
2013
,
The Nature of Statistical Learning Theory
,
Springer Science & Business Media
,
New York
.
13.
Duan
,
K.
,
Keerthi
,
S. S.
, and
Poo
,
A. N.
,
2003
, “
Evaluation of Simple Performance Measures for Tuning SVM Hyperparameters
,”
Neurocomputing
,
51
, pp.
41
59
. 10.1016/S0925-2312(02)00601-X
14.
Chen
,
T.
, and
Guestrin
,
C.
,
2016
, “
Xgboost: A Scalable Tree Boosting System
,”
Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining
,
San Francisco, CA
,
Aug. 13–17
,
ACM
, pp.
785
794
.
15.
Probst
,
P.
,
Bischl
,
B.
, and
Boulesteix
,
A.-L.
,
2019
, “
Tunability: Importance of Hyperparameters of Machine Learning Algorithms
,”
J. Mach. Learn. Res.
,
20
(
53
), pp.
1
32
.
16.
International
,
A.
,
2015
,
ASTM D638-14, Standard Test Method for Tensile Properties of Plastics
,
ASTM International
.
17.
Cortez
,
P.
, and
Embrechts
,
M. J.
,
2013
, “
Using Sensitivity Analysis and Visualization Techniques to Open Black box Data Mining Models
,”
Inf. Sci.
,
225
, pp.
1
17
. 10.1016/j.ins.2012.10.039
You do not currently have access to this content.