Abstract

In this study, a novel procedure is proposed to determine the shape parameter of multiquadric (MQ) radial basis function (RBF) utilizing multivariate adaptive regression splines (Mars) in a free convection problem. Input data (truth data) of Mars is prepared by applying MQ-RBF pseudospectral (PS) method to a free convection problem in a cavity with differentially heated vertical walls. Shape parameter determination in this step is also proposed. The input data obtained by the numerical method and by the proposed way to determine shape parameter is used in the package earth of R project, and a model function is built to estimate the shape parameter. Then, instead of using the proposed search inside the numerical method, the model function determines the shape parameter at any truth data. Results are also compared with a benchmark study, and good agreement is observed in the same free convection problem. The model function built is also tested against the results of the original method.

References

References
1.
Hardy
,
R. L.
,
1971
, “
Multiquadric Equations of Topography and Other Irregular Surfaces
,”
J. Geophys. Res.
,
76
(
8
), pp.
1905
1915
. 10.1029/JB076i008p01905
2.
Franke
,
R.
,
1982
, “
Scattered Data Interpolation: Tests of Some Methods
,”
Math. Comput.
,
38
(
157
), pp.
181
200
. 10.2307/2007474
3.
Kansa
,
E. J.
,
1990
, “
Multiquadrics—A Scattered Data Approximation Scheme With Applications to Computational Fluid Dynamics-I
,”
Comput. Math. Appl.
,
19
(
8–9
), pp.
127
145
. 10.1016/0898-1221(90)90270-T
4.
Kansa
,
E. J.
,
1990
, “
Multiquadrics—A Scattered Data Approximation Scheme With Applications to Computational Fluid Dynamics-II
,”
Comput. Math. Appl.
,
19
(
8–9
), pp.
147
161
. 10.1016/0898-1221(90)90271-K
5.
Carlson
,
R. E.
, and
Foley
,
T. A.
,
1991
, “
The Parameter R2 in Multiquadric Interpolation
,”
Comput. Math. Appl.
,
21
(
9
), pp.
29
42
. 10.1016/0898-1221(91)90123-L
6.
Rippa
,
S.
,
1999
, “
An Algorithm for Selecting a Good Value for the Parameter C in Radial Basis Function Interpolation
,”
Adv. Comput. Math.
,
11
(
2/3
), pp.
193
210
. 10.1023/A:1018975909870
7.
Fornberg
,
B.
, and
Zuev
,
J.
,
2007
, “
The Runge Phenomenon and Spatially Variable Shape Parameters in RBF Interpolation
,”
Comput. Math. Appl.
,
54
(
3
), pp.
379
398
. 10.1016/j.camwa.2007.01.028
8.
Ferreira
,
A. J. M.
,
Fasshauer
,
G. E.
,
Batra
,
R. C.
, and
Rodrigues
,
J. D.
,
2008
, “
Static Deformations and Vibration Analysis of Composite and Sandwich Plates Using a Layerwise Theory and RBF-PS Discretizations With Optimal Shape Parameter
,”
Compos. Struct.
,
86
(
4
), pp.
328
343
. 10.1016/j.compstruct.2008.07.025
9.
Sarra
,
S. A.
, and
Sturgill
,
D.
,
2009
, “
A Random Variable Shape Parameter Strategy for Radial Basis Function Approximation Methods
,”
Eng. Anal. Bound. Elem.
,
33
(
11
), pp.
1239
1245
. 10.1016/j.enganabound.2009.07.003
10.
Tsai
,
C. H.
,
Kolibal
,
J.
, and
Li
,
M.
,
2010
, “
The Golden Section Search Algorithm for Finding a Good Shape Parameter for Meshless Collocation Methods
,”
Eng. Anal. Bound. Elem.
,
34
(
8
), pp.
738
746
. 10.1016/j.enganabound.2010.03.003
11.
Bayona
,
V.
,
Moscoso
,
M.
, and
Kindelan
,
M.
,
2011
, “
Optimal Constant Shape Parameter for Multiquadric Based RBF-FD Method
,”
J. Comput. Phys.
,
230
(
19
), pp.
7384
7399
. 10.1016/j.jcp.2011.06.005
12.
Bayona
,
V.
,
Moscoso
,
M.
, and
Kindelan
,
M.
,
2012
, “
Optimal Variable Shape Parameter for Multiquadric Based RBF-FD Method
,”
J. Comput. Phys.
,
232
(
6
), pp.
2466
2481
. 10.1016/j.jcp.2011.11.036
13.
Sanyasiraju
,
Y. V. S. S.
, and
Satyanarayana
,
C.
,
2013
, “
On Optimization of the RBF Shape Parameter in a Grid-Free Local Scheme for Convection Dominated Problems Over Non-uniform Centers
,”
Appl. Math. Model.
,
37
(
12–13
), pp.
7245
7272
. 10.1016/j.apm.2013.01.054
14.
Afiatdoust
,
F.
, and
Esmaeilbeigi
,
M.
,
2015
, “
Optimal Variable Shape Parameters Using Genetic Algorithm for Radial Basis Function Approximation
,”
Ain Shams Eng. J.
,
6
(
2
), pp.
639
647
. 10.1016/j.asej.2014.10.019
15.
Biazar
,
J.
, and
Hosami
,
M.
,
2017
, “
An Interval for the Shape Parameter in Radial Basis Function Approximation
,”
Appl. Math. Comput.
,
315
, pp.
131
149
. 10.1016/j.amc.2017.07.047
16.
de Davis
,
G. V.
,
1983
, “
Natural Convection of Air in a Square Cavity: A Bench Mark Numerical Solution
,”
Int. J. Numer. Methods Fluids
,
3
(
3
), pp.
249
264
. 10.1002/fld.1650030305.
17.
Sheikholeslami
,
M.
, and
Chamkha
,
A. J.
,
2016
, “
Flow and Convective Heat Transfer of a Ferro-Nanofluid in a Double-Sided Lid-Driven Cavity With a Wavy Wall in the Presence of a Variable Magnetic Field
,”
Numer. Heat Transf. Part A
,
69
(
10
), pp.
1186
1200
. 10.1080/10407782.2015.1125709.
18.
Sheremet
,
M. A.
,
Oztop
,
H. F.
, and
Pop
,
I.
,
2016
, “
MHD Natural Convection in An Inclined Wavy Cavity With Corner Heater Filled With a Nanofluid
,”
J. Magn. Magn. Mater.
,
416
, pp.
37
47
. 10.1016/j.jmmm.2016.04.061
19.
Zhu
,
Y. D.
,
Shu
,
C.
,
Qiu
,
J.
, and
Tani
,
J.
,
2004
, “
Numerical Simulation of Natural Convection Between Two Elliptical Cylinders Using DQ Method
,”
Int. J. Heat Mass Transf.
,
47
(
4
), pp.
797
808
. 10.1016/j.ijheatmasstransfer.2003.06.005
20.
Pekmen Geridonmez
,
B.
,
2019
, “
Free Convection in a Wavy Walled Cavity With a Magnetic Source Using Radial Basis Functions
,”
ASME J. Heat Transf.
,
141
(
4
), p.
ID 042501
. 10.1115/1.4042782
21.
Michelli
,
C. A.
,
1986
, “
Interpolation of Scattered Data: Distance Matrices and Conditionally Positive Definite Functions
,”
Constr. Approx.
,
2
(
1
), pp.
11
22
. 10.1007/BF01893414
22.
Madych
,
W. R.
, and
Nelson
,
S. A.
,
1992
, “
Bounds on Multivariate Polynomials and Exponential Error Estimates for Multiquadric Interpolation
,”
J. Approx. Theory
,
70
(
1
), pp.
94
114
. 10.1016/0021-9045(92)90058-V
23.
Buhmann
,
M.
,
2003
,
Radial Basis Functions: Theory and Implementations
,
Cambridge University Press
,
Cambridge
.
24.
Fasshauer
,
G.
,
2007
,
Meshfree Approximation Methods With Matlab
,
World Scientific Publications
,
Singapore
.
25.
Fasshauer
,
G. E.
, and
McCourt
,
M.
,
2015
,
Kernel-Based Approximation Methods Using MATLAB
,
World Scientific Publications
,
Singapore
.
26.
Friedman
,
J. H.
,
1991
, “
Multivariate Adaptive Regression Splines
,”
Ann. Stat.
,
19
(
1
), pp.
1
141
. 10.1214/aos/1176347963
27.
Milborrow
,
S.
,
2011
,
Derived from MDA: Mars by T. Hastie and R. Tibshirani, Earth: Multivariate Adaptive Regression Splines. R Package
. https://cran.r-project.org/web/packages/earth/earth.pdf
28.
Geridonmez
,
F.
, and
Durak
,
U.
,
2010
,
Launch Acceptable Region Calculation Procedure using R-Project and Mars Algorithm, Avionics System Integration Symposium ASES
,
Istanbul, Turkey
,
April
.
29.
Khanafer
,
K.
,
Vafai
,
K.
, and
Lightstone
,
M.
,
2003
, “
Buoyancy-Driven Heat Transfer Enhancement in a Two-Dimensional Enclosure Utilizing Nanofluids
,”
Int. J. Heat Mass Transf.
,
46
(
19
), pp.
3639
3653
. 10.1016/S0017-9310(03)00156-X
You do not currently have access to this content.