Abstract

The accuracy of rail profile inspections is critical for guaranteeing transport security and rail maintenance, and hence, the laser-based rail profile inspection has frequently been used. However, there are two major challenges in practical applications: the distortion of the measured rail profile and the influences of noise and outliers. In this paper, the sparse scaling iterative closest point method is proposed for rail profile inspection. First, the existing challenges for processing the measured rail profile via a line laser sensor are generally described. After this, a robust registration energy function that evolves both the scale factor and the lp norm is proposed for rail profile registration. Finally, the Hausdorff distance is adopted to visualize the matching results. The experiments indicate that the proposed method can both precisely rectify the distorted rail profile and avoid the influences of noise and outliers when compared with the conventional iterative closest point, sparse iterative closest point, and reweighted-scaling closest point methods.

References

References
1.
Yang
,
Y.
,
Liu
,
L.
,
Yi
,
B.
, and
Chen
,
F.
,
2018
, “
An Accurate and Fast Method to Inspect Rail Wear Based on Revised Global Registration
,”
IEEE Access
,
6
, pp.
57267
57278
. 10.1109/ACCESS.2018.2873903
2.
Yi
,
B.
,
Yang
,
Y.
,
Yi
,
Q.
, and
Li
,
X. B.
,
2017
, “
Novel Method for Rail Wear Inspection Based on Sparse Iterative Closest Point Method
,”
Meas. Sci. Technol.
,
24
(
10
), pp.
2458
2467
. 10.1088/1361-6501/aa8691
3.
Liu
,
Z.
,
Sun
,
J.
,
Wang
,
H.
, and
Zhang
,
G. G.
,
2011
, “
Simple and Fast Rail Wear Measurement Method Based on Structured Light
,”
Opt. Lasers Eng.
,
49
(
11
), pp.
1343
1351
. 10.1016/j.optlaseng.2011.05.014
4.
Wang
,
C.
,
Ma
,
Z. J.
,
Li
,
Y. F.
,
Zeng
,
J. Z.
,
Jin
,
T.
, and
Liu
,
H. L.
,
2017
, “
Distortion Calibrating Method of Measuring Rail Profile Based on Local Affine Invariant Feature Descriptor
,”
Measurement
,
110
(
Nov.
), pp.
11
21
. 10.1016/j.measurement.2017.06.015
5.
Liu
,
H. L.
,
Li
,
Y. F.
,
Ma
,
Z. J.
, and
Wang
,
C.
,
2017
, “
Recognition and Calibration of Rail Profile Under Affine-Distortion-Based Point Set Mapping
,”
IEEE Trans. Instrum. Meas.
,
66
(
1
), pp.
131
140
. 10.1109/TIM.2016.2615448
6.
Wang
,
C.
,
Ma
,
Z. J.
,
Li
,
Y. F.
,
Zeng
,
J. Z.
,
Jin
,
T.
, and
Liu
,
H. L.
,
2017
, “
Deviation Rectification for Dynamic Measurement of Rail Wear Based on Coordinate Sets Projection
,”
Meas. Sci. Technol.
,
28
(
10
), pp.
5203
5216
. 10.1088/1361-6501/aa8214
7.
Wang
,
C.
,
Liu
,
H. L.
,
Ma
,
Z. J.
, and
Zeng
,
J. Z.
,
2018
, “
Dynamic Inspection of Rail Wear via a Three-Step Method: Auxiliary Plane Establishment, Self-Calibration and Projecting
,”
IEEE Access
,
6
, pp.
36143
36154
. 10.1109/ACCESS.2018.2851572
8.
Wang
,
C.
,
Ma
,
Z. J.
,
Li
,
Y. F.
,
Zeng
,
J. Z.
,
Jin
,
T.
, and
Liu
,
H. L.
,
2018
, “
Distortion Rectifying for Dynamically Measuring Rail Profile Based on Self-Calibration of Multiline Structured Light
,”
IEEE Trans. Instrum. Meas.
,
67
(
3
), pp.
678
689
. 10.1109/TIM.2017.2784039
9.
Sun
,
J. H.
,
Liu
,
Z.
,
Zhao
,
Y. T.
,
Liu
,
Q. Z.
, and
Zhang
,
G. G.
,
2013
, “
Motion Deviation Rectifying Method of Dynamically Measuring Rail Wear Based on Multi-Line Structured-Light Vision
,”
Opt. Laser Technol.
,
50
(
Sep.
), pp.
25
32
. 10.1016/j.optlastec.2013.02.004
10.
Chen
,
P.
,
Hu
,
Y.
,
Li
,
W.
, and
Wang
,
P. J.
,
2018
, “
Rail Wear Inspection Based on Computer-Aided Design Model and Point Cloud Data
,”
Adv. Mech. Eng.
,
10
(
12
), pp.
1
9
. 10.1177/1687814018816782
11.
Yang
,
Y.
,
Liu
,
L.
,
Yi
,
B.
, and
Chen
,
F.
,
2019
, “
Dynamic Inspection of a Rail Profile Under Affine Distortion Based on the Reweighted-Scaling Iterative Closest Point Method
,”
Meas. Sci. Technol.
10.1088/1361-6501/ab2e38
12.
Li
,
Y.
,
Zhong
,
X.
,
Ma
,
Z.
, and
Liu
,
H.
,
2019
, “
The Outlier and Integrity Detection of Rail Profile Based on Profile Registration
,”
IEEE Trans. Intell. Transp. Syst.
, pp.
1
12
. 10.1109/TITS.2019.2901633
13.
Molleda
,
J.
,
Usamentiaga
,
R.
,
Millara
,
A.
,
Garcia
,
D.
,
Manso
,
P.
,
Suarez
,
C.
, and
Garcia
,
I.
,
2016
, “
A Profile Measurement System for Rail Quality Assessment During Manufacturing
,”
IEEE Trans. Ind. Appl.
,
52
(
3
), pp.
2684
2692
. 10.1109/TIA.2016.2524459
14.
Yan
,
J
. M.
, and
Fu
,
M
. H.
,
2011
,
Vehicle Engineering[M]
,
China Railway Publishing House
,
Beijing, China
, pp.
165
215
.
15.
Candes
,
E. J.
,
Wakin
,
M. B.
, and
Boyd
,
S. P.
,
2008
, “
Enhancing Sparsity by Reweighted l(1) Minimization
,”
J. Fourier Anal. Appl.
,
14
(
5–6
), pp.
877
905
. 10.1007/s00041-008-9045-x
16.
Bergstrom
,
P.
, and
Edlund
,
O.
,
2014
, “
Robust Registration of Point Sets Using Iteratively Reweighted Least Squares
,”
Comput. Optim. Appl.
,
58
(
3
), pp.
543
561
. 10.1007/s10589-014-9643-2
17.
Bouaziz
,
S.
,
Tagliasacchi
,
A.
, and
Pauly
,
M.
,
2013
, “
Sparse Iterative Closest Point
,”
Symp. Geom. Process.
,
32
(
5
), pp.
113
123
. 10.1111/cgf.12178
18.
The Ministry of Railway for the People’s Republic of China
,
2012
,
Railway Transportation 2006-146: Railway Maintenance Rules
,
China Railway Press
,
Beijing, China
.
You do not currently have access to this content.