During present offshore gas-condensate production, multiphase flow-meters, due to its exceedingly high cost, are being substituted by a soft sensing (SS) technique for estimating total and single-well flowrates through sensor measurements and physical models. In this work, the inverse problem is solved by data reconciliation (DR), minimizing weighted sum of errors with constraints integrating multiple two-phase flow models. The DR problem is solved by parallel genetic algorithm (PGA) without complex calculations required by conventional optimization. The newly developed SS method is tested by data from a realistic gas-condensate production system. The method is proved of good accuracy and robustness with invalid individual pressure sensor or unavailable total flowrate measurements. Meanwhile, the proposed method shows good parallel performance and the time cost of each DR process can meet the demand of engineering application.

References

References
1.
Gryzlov
,
A.
,
Leskens
,
M.
, and
Mudde
,
R. F.
,
2009
, “
Soft Sensing for Two-Phase Flow Using an Ensemble Kalman Filter
,”
IFAC Proc. Vol.
,
42
(
11
), pp.
584
589
.
2.
Bloemen
,
H.
,
Belfroid
,
S.
,
Sturm
,
W.
, and
Verhelst
,
F.
,
2006
, “
Soft Sensing for Gas-Lift Wells
,”
SPE J.
,
11
(
4
), pp.
454
463
.
3.
Kuehn
,
D. R.
, and
Davidson
,
H.
,
1961
, “
Computer Control II. Mathematics of Control
,”
Chem. Eng. Prog.
,
57
(
6
), pp.
44
47
.
4.
Wongrat
,
W.
,
Srinophakun
,
T.
, and
Srinophakun
,
P.
,
2005
, “
Modified Genetic Algorithm for Nonlinear Data Reconciliation
,”
Comput. Chem. Eng.
,
29
(
5
), pp.
1059
1067
.
5.
Prata
,
D. M.
,
Schwaab
,
M.
,
Lima
,
E. L.
, and
Pinto
,
J. C.
,
2009
, “
Nonlinear Dynamic Data Reconciliation and Parameter Estimation Through Particle Swarm Optimization: Application for an Industrial Polypropylene Reactor
,”
Chem. Eng. Sci.
,
64
(
18
), pp.
3953
3967
.
6.
Prata
,
D. M.
,
Schwaab
,
M.
,
Lima
,
E. L.
, and
Pinto
,
J. C.
,
2010
, “
Simultaneous Robust Data Reconciliation and Gross Error Detection Through Particle Swarm Optimization for an Industrial Polypropylene Reactor
,”
Chem. Eng. Sci.
,
65
(
17
), pp.
4943
4954
.
7.
Valdetaro
,
E. D.
, and
Schirru
,
R.
,
2009
, “
Particle Swarm Optimization Applied to Data Reconciliation in Nuclear Power Plant
,”
International Nuclear Atlantic Conference (INAC 2009)
,
Rio de Janeiro, Brazil
,
Sept. 27–Oct. 2
, p. VDI 2048 Part I, 2000.
8.
Valdetaro
,
E. D.
, and
Schirru
,
R.
,
2011
, “
Simultaneous Model Selection, Robust Data Reconciliation and Outlier Detection With Swarm Intelligence in a Thermal Reactor Power Calculation
,”
Ann. Nucl. Energy
,
38
(
9
), pp.
1820
1832
.
9.
Zhang
,
Z.
, and
Chen
,
J.
,
2014
, “
Simultaneous Data Reconciliation and Gross Error Detection for Dynamic Systems Using Particle Filter and Measurement Test
,”
Comput. Chem. Eng.
,
69
, pp.
66
74
.
10.
Zhang
,
Z.
, and
Chen
,
J.
,
2015
, “
Correntropy Based Data Reconciliation and Gross Error Detection and Identification for Nonlinear Dynamic Processes
,”
Comput. Chem. Eng.
,
75
, pp.
120
134
.
11.
Lorentzen
,
R. J.
,
Fjelde
,
K. K.
,
Frøyen
,
J.
,
Lage
,
A. C. V. M.
,
Nævdal
,
G.
, and
Vefring
,
E. H.
,
2001
, “
Underbalanced Drilling: Real Time Data Interpretation and Decision Support
,”
SPE/IADC Drilling Conference
,
Amsterdam, The Netherlands
,
Feb. 27–Mar. 1
, Vol.
1
, pp.
61
70
.
12.
Chuen
,
C.
,
Nukman
,
M. A.
,
Mandal
,
D.
,
Salim
,
A.
,
Sepulveda
,
W.
,
Vaca
,
J.
, and
Goh
,
K.
,
2017
, “
Application of Allocation Algorithm for Surveillance and Optimization of Intelligent Wells
,”
SPE/IATMI Asia Pacific Oil & Gas Conference and Exhibition
,
Jakarta, Indonesia
,
Oct. 17–19
, Vol.
2
, pp.
1280
1293
.
13.
Grimstad
,
B.
,
2015
, “
Daily Production Optimization for Subsea Production Systems: Methods Based on Mathematical Programming and Surrogate Modelling
,”
Ph.D. Thesis, Norwegian University of Science and Technology
,
Trondheim
.
14.
Denney
,
D.
,
2011
, “
Field and Installation Monitoring With Online Data Validation and Reconciliation—Middle East and West Africa Offshore Fields
,”
J. Petrol. Technol.
,
63
(
5
), pp.
77
79
.
15.
Haouche
,
M.
,
Tessier
,
A.
,
Deffous
,
Y.
,
Authier
,
J. F.
,
Couput
,
J. P.
,
Caulier
,
R.
, and
Vrielynck
,
B.
,
2012
, “
Smart Metering: An Online Application of Data Validation and Reconciliation Approach
,”
SPE Intelligent Energy International
,
Utrecht, The Netherlands
,
Mar. 27–29
, Vol.
1
, pp.
215
224
.
16.
Haouche
,
M.
,
Tessier
,
A.
,
Deffous
,
Y.
, and
Authier
,
J. F.
,
2012
, “
Virtual Flow Meter Pilot: Based on Data Validation and Reconciliation Approach
,”
SPE International Production and Operations Conference & Exhibition
,
Doha, Qatar
,
May 14–16
, Vol.
1
, pp.
1071
1083
.
17.
Grimstad
,
B.
, and
Sandnes
,
A.
,
2016
, “
Global Optimization With Spline Constraints: A New Branch-and-Bound Method Based on B-Splines
,”
J. Global Optim.
,
65
(
3
), pp.
401
439
.
18.
Grimstad
,
B.
,
Foss
,
B.
,
Heddle
,
R.
, and
Woodman
,
M.
,
2016
, “
Global Optimization of Multiphase Flow Networks Using Spline Surrogate Models
,”
Comput. Chem. Eng.
,
84
, pp.
237
254
.
19.
Konfrst
,
Z.
,
2004
, “
Parallel Genetic Algorithms: Advances, Computing Trends, Applications and Perspectives
,”
Proceedings of the 18th International Parallel and Distributed Processing Symposium
,
Santa Fe, NM
,
Apr. 26–30
, p.
162
.
20.
Xue
,
S.
,
Guo
,
S.
, and
Bai
,
D.
,
2008
, “
The Analysis and Research of Parallel Genetic Algorithm
,”
4th International Conference on Wireless Communications, Networking and Mobile Computing
,
Dalian, China
,
Sept. 19–21
, pp.
1
4
.
21.
Wang
,
D.
,
Gong
,
J.
,
Fan
,
D.
,
Shi
,
G.
, and
Yang
,
J.
,
2018
, “
Application of Genetic-Algorithm-Based Data Reconciliation on Offshore Virtual Flow Metering of Gas-Condensate Field Production
,”
ASME 2018 Pressure Vessels and Piping Conference
,
Prague, Czech Republic
,
July 15–20
, p.
V007T07A003
.
22.
Vasebi
,
A.
,
Poulin
,
É.
, and
Hodouin
,
D.
,
2014
, “
Selecting Proper Uncertainty Model for Steady-State Data Reconciliation–Application to Mineral and Metal Processing Industries
,”
Miner. Eng.
,
65
, pp.
130
144
.
23.
Ansari
,
A.
,
Sylvester
,
N.
, and
Sarica
,
C.
,
1994
, “
A Comprehensive Mechanistic Model for Upward Two-Phase Flow in Wellbores
,”
SPE Production & Facilities
,
9
(
2
), pp.
143
151
.
24.
Brill
,
J. P.
, and
Mukherjee
,
H.
,
1999
,
Multiphase Flow in Wells
,
Society of Petroleum Engineers Inc.
,
Richardson, TX
, pp.
47
52
.
25.
Slemer-Oslen
,
S.
, and
Holm
,
H. H. K.
,
1995
, “
Subsea Choke Flow Characteristics
,”
7th International Conference on Multiphase Production Technology
,
Cannes, France
,
Oct. 17–19
, Vol.
14
, pp.
441
466
.
26.
Mukherjee
,
H.
, and
Brill
,
J.
,
1985
, “
Pressure Drop Correlations for Inclined Two-Phase Flow
,”
ASME J. Energy Res. Technol.
,
107
(
4
), pp.
549
554
.
27.
Alves
,
I. N.
,
Alhanati
,
F. J. S.
, and
Shoham
,
O.
,
1992
, “
A Unified Model for Predicting Flowing Temperature Distribution in Wellbores and Pipelines
,”
SPE Prod. Eng.
,
7
(
4
), pp.
363
367
.
28.
Wang
,
X.
, and
Cao
,
L.
,
2002
,
Genetic Algorithm: Theory, Application and Software Implementation
,
Xi'an Jiaotong University Press
,
Xi'an
, pp.
18
102
.
You do not currently have access to this content.