In the product development process, as it is currently practiced, production is still often neglected in the early design phases, leading to late and costly changes. Using the knowledge of product designers concerning production process design, this paper introduces an ontological framework that enables early feasibility analyses. In this way, the number of iterations between product and process design can almost certainly be reduced, which would accelerate the product development process. Additionally, the approach provides process engineers with possible production sequences that can be used for process planning. To provide feasibility feedback, the approach presented relies on semantic web technologies. An ontology was developed that supports designers to model the relations among products, processes, and resources in a way that allows the use of generic Sparql Protocol And RDF Query Language (SPARQL) queries. Future applicability of this approach is ensured by aligning it with the top-level ontology Descriptive Ontology for Linguistic and Cognitive Engineering (DOLCE). We also compare the ontology’s universals to fundamental classes of existing knowledge bases from the manufacturing and the batch processing domains. This comparison demonstrates the approach’s domain-independent applicability. Two proofs of concept are described, one in the manufacturing domain and one in the batch processing domain.

References

References
1.
Atkinson
,
R.
,
1999
, “
Project Management: Cost, Time and Quality, Two Best Guesses and a Phenomenon, It’s Time to Accept Other Success Criteria
,”
IJPM
,
17
(
6
), pp.
337
342
.
2.
Vogel-Heuser
,
B.
,
Fischer
,
J.
,
Feldmann
,
S.
,
Ulewicz
,
S.
, and
Rösch
,
S.
,
2017
, “
Modularity and Architecture of PLC-Based Software for Automated Production Systems: An Analysis in Industrial Companies
,”
JSS
,
131
, pp.
35
62
.
3.
Helbig
,
T.
,
Erler
,
S.
,
Westkämper
,
E.
, and
Hoos
,
J.
,
2016
, “
Modelling Dependencies to Improve the Cross-domain Collaboration in the Engineering Process of Special Purpose Machinery
,”
Proc. CIRP
,
41
, pp.
393
398
.
4.
Ehrlenspiel
,
K.
,
Kiewert
,
A.
,
Lindemann
,
U.
,
2007
,
Cost-Efficient Design
,
Springer
,
Berlin, Heidelberg
.
5.
National Research Council Division on Engineering and Physical Sciences, Space Studies Board, and Committee on Cost Growth in NASA Earth and Space Science Missions
,
2010
,
Controlling Cost Growth of NASA Earth and Space Science Missions
,
National Academies Press
,
Washington, D.C
.
6.
Monnerjahn
,
V.
,
Gramlich
,
S.
,
Groche
,
P.
,
Roos
,
M.
,
Wagner
,
C.
,
Weber Martins
,
T.
,
2017
, “Introduction: Production Technologies and Product Development,”
Manufacturing Integrated Design
,
P.
Groche
,
E.
Bruder
, and
S.
Gramlich
, eds.
Springer
,
New York
, pp.
1
9
.
7.
Office of the Under Secretary of Defense
,
1998
,
Integrated Product and Process Development Handbook
,
US Department of Defense
,
Washington, DC
.
8.
Office of the Under Secretary of Defense
,
1996
,
DoD Guide to IPPD
,
US Department of Defense
,
Washington, DC
.
9.
Gausemeier
,
J.
,
Dumitrescu
,
R.
,
Kahl
,
S.
, and
Nordsiek
,
D.
,
2011
, “
Integrative Development of Product and Production System for Mechatronic Products
,”
Rob. Comput.-Integr. Manuf.
,
27
(
4
), pp.
772
778
.
10.
Ponn
,
J.
, and
Lindemann
,
U.
,
2011
,
Konzeptentwicklung und Gestaltung Technischer Produkte
,
2nd ed.
,
Springer
,
New York
.
11.
Ulrich
,
K. T.
, and
Eppinger
,
S. D.
,
2011
,
Product Design and Development
,
5th ed.
,
McGraw-Hill
,
New York
.
12.
Ehrlenspiel
,
K.
, and
Meerkamm
,
H.
,
2017
,
Integrierte Produktentwicklung
,
4th ed.
,
Carl Hanser Verlag
,
München
.
13.
Weber
,
C.
,
2005
, “
CPM/PDD - An Extended Theoretical Approach to Modelling Products and Product Development Processes
,”
German-Israeli Symposium for Design and Manufacturing
,
Berlin, Germany
,
July 6–10
, pp.
159
179
.
14.
Meboldt
,
M.
,
2008
, “
Mental and Formal Modelling, A Contribution to the Integrated Product Development Model (iPeM)
,” Ph.D. thesis,
Karlsruher Institut für Technologie
.
15.
Uz Zaman
,
K.U.
,
Siadat
,
A.
,
Rivette
,
M.
,
Baqai
,
A.A.
, and
Qiao
,
L.
,
2017
, “
Integrated Product-Process Design to Suggest Appropriate Manufacturing Technology: A Review
,”
Int. J. Adv. Manuf. Tech.
,
91
(
1–4
), pp.
1409
1430
.
16.
Smith
,
B.
,
Köhler
,
J.
, and
Kumar
,
A.
,
2004
, “On the Application of Formal Principles to Life Science Data: A Case Study in the Gene Ontology,”
Data Integration in the Life Sciences
,
Springer
,
Berlin, Heidelberg
, pp.
79
94
.
17.
Gruber
,
T. R.
,
1993
, “
A Translation Approach to Portable Ontology Specifications
,”
Knowl. Acquis.
,
5
(
2
), pp.
199
220
.
18.
Legat
,
C.
,
Lamparter
,
S.
, and
Vogel-Heuser
,
B.
,
2013
, “Knowledge-Based Technologies for Future Factory Engineering and Control,”
Service Orientation in Holonic and Multi Agent Manufacturing and Robotics
,
T.
Borangiu
,
A.
Thomas
, and
D.
Trentesaux
, eds., Vol.
472
of Studies in Computational Intelligence,
Springer
,
Berlin, Heidelberg
, pp.
355
374
.
19.
Klinker
,
G.
,
Bhola
,
C.
,
Dallemagne
,
G.
,
Marques
,
D.
, and
McDermott
,
J.
,
1991
, “
Usable and Reusable Programming Constructs
,”
Knowl. Acquis.
,
3
(
2
), pp.
117
135
.
20.
Morbach
,
J.
,
Wiesner
,
A.
, and
Marquardt
,
W.
,
2009
, “
OntoCAPE – A (Re)Usable Ontology for Computer-Aided Process Engineering
,”
Comput. Chem. Eng.
,
33
(
10
), pp.
1546
1556
.
21.
Lastra
,
J. L. M.
,
Delamer
,
I. M.
, and
Ubis
,
F.
,
2010
,
Domain Ontologies for Reasoning Machines in Factory Automation
,
ISA
,
Durham, NC
.
22.
Arp
,
R.
,
Smith
,
B.
, and
Spear
,
A. D.
,
2015
,
Building Ontologies With Basic Formal Ontology
,
MIT Press
,
Cambridge, MA
.
23.
Munn
,
K.
, and
Smith
,
B.
,
2008
,
Applied Ontology: An Introduction
,
Ontos Verlag
,
Frankfurt
.
24.
Smith
,
Barry
,
2015
,
Basic Formal Ontology 2.0: Specification and User’s Guide
. https://github.com/BFO-ontology/BFO.
25.
Gangemi
,
A.
,
Guarino
,
N.
,
Masolo
,
C.
,
Oltramari
,
A.
, and
Schneider
,
L.
,
2002
, “Sweetening Ontologies With DOLCE,”
Knowledge Engineering and Knowledge Management
,
Springer
,
Berlin, Heidelberg
, pp.
166
181
.
26.
Masolo
,
C.
,
Borgo
,
S.
,
Gangemi
,
A.
,
Guarino
,
N.
,
Oltramari
,
A.
, and
Schneider
,
L.
,
2002
,
The WonderWeb Library of Foundational Ontologies
, Technical Report D17, ISTC-CNR.
27.
Borgo
,
S.
, and
Masolo
,
C.
,
2009
, “Foundational Choices in DOLCE,”
Handbook on Ontologies
.
Springer
,
Berlin, Heidelberg
, pp.
361
381
.
28.
Mizoguchi
,
R.
,
2010
, “
YAMATO: Yet Another More Advanced Top-Level Ontology
,”
Australasian Ontology Workshop
,
Adelaide, Australia
,
Dec. 7
, pp.
1
15
.
29.
Herre
,
H.
,
2010
, “General Formal Ontology (GFO): A Foundational Ontology for Conceptual Modelling,”
Theory and Applications of Ontology: Computer Applications
,
Springer
Netherlands, Dordrecht
, pp.
297
345
.
30.
Temal
,
L.
,
Rosier
,
A.
,
Dameron
,
O.
, and
Burgun
,
A.
,
2010
, “
Mapping BFO and DOLCE
,”
Stud. Health Technol. Inf.
,
160
(
2
), pp.
1065
1069
.
31.
Seppala
,
S.
,
2015
, “
Mapping WordNet to Basic Formal Ontology Using the KYOTO Ontology
,”
ICBO
,
Lisbon, Portugal
,
July 27–30
.
32.
Fellbaum
,
C.
,
1998
,
WordNet: An Electronic Lexical Database
,
MIT Press
,
Cambridge, MA
.
33.
Ameri
,
F.
,
Urbanovsky
,
C.
, and
Mcarthur
,
C.
,
2012
, “
A Systematic Approach to Developing Ontologies for Manufacturing Service Modeling
,”
OSEMA
,
Graz, Austria
,
July 24
.
34.
Bruno
,
G.
,
Antonelli
,
D.
, and
Villa
,
A.
,
2015
, “
A Reference Ontology to Support Product Lifecycle Management
,”
Proc. CIRP
,
33
, pp.
41
46
.
35.
Scheer
,
A. W.
,
Thomas
,
O.
, and
Adam
,
O.
,
2005
, “Process Modeling Using Event-Driven Process Chains,”
Process-Aware Information Systems
,
Wiley
,
New Jersey
, pp.
119
146
.
36.
Göring
,
M.
, and
Fay
,
A.
,
2012
, “
Modeling change and structural dependencies of automation systems
,”
ETFA
,
Krakow, Poland
,
Sept. 17–21
,
ETFA, IEEE
.
37.
Feldmann
,
S.
,
Kernschmidt
,
K.
, and
Vogel-Heuser
,
B.
,
2014
, “
Combining a SysML-Based Modeling Approach and Semantic Technologies for Analyzing Change Influences in Manufacturing Plant Models
,”
Proc. CIRP
,
17
, pp.
451
456
.
38.
Nielsen
,
J.
,
2003
, “
Information Modeling of Manufacturing Processes: Information Requirements for Process Planning in a Concurrent Engineering Environment
,” Ph.D. thesis,
KTH
.
39.
Ferrer
,
B. R.
,
Ahmad
,
B.
,
Vera
,
D.
,
Lobov
,
A.
,
Harrison
,
R.
, and
Martínez Lastra
,
J. L.
,
2016
, “
Product, Process and Resource Model Coupling for Knowledge-Driven Assembly Automation
,”
at-Automatisierungstechnik
,
64
(
3
), pp.
231
243
.
40.
Cutting-Decelle
,
A. F.
,
Young
,
R. I. M.
,
Michel
,
J. J.
,
Grangel
,
R.
,
Le Cardinal
,
J.
, and
Bourey
,
J. P.
,
2007
, “
ISO 15531 MANDATE: A Product-Process-Resource Based Approach for Managing Modularity in Production Management
,”
Concurr. Eng.
,
15
(
2
), pp.
217
235
.
41.
Chandra
,
C.
, and
Kamrani
,
A.
,
2003
, “
Knowledge Management for Consumer-Focused Product Design
,”
J. Intell. Manuf.
,
14
(
6
), pp.
557
580
.
42.
Raza
,
M. B.
, and
Harrison
,
R.
,
2011
, “
A Semantic Web Representation of a Product Range Specification based on Constraint Satisfaction Problem in the Automotive Industry
,”
OSEMA
,
Heraklion, Crete, Greece
,
May 29
, pp.
23
36
.
43.
Lemaignan
,
S.
,
Siadat
,
A.
,
Dantan
,
J.-Y.
, and
Semenenko
,
A.
,
2006
, “
MASON: A Proposal For An Ontology Of Manufacturing Domain
,”
Workshop on Distributed Intelligent Systems: Collective Intelligence and Its Applications
,
Prague, Czech Republic
,
June 15–16
,
IEEE
,
New York
, pp.
195
200
.
44.
Usman
,
Z.
,
2012
, “
A Manufacturing Core Concepts Ontology to Support Knowledge Sharing
,” Ph.D. thesis,
Loughborough University
.
45.
Usman
,
Z.
,
Young
,
R.
,
Chungoora
,
N.
,
Palmer
,
C.
,
Case
,
K.
, and
Harding
,
J.
,
2013
, “
Towards a Formal Manufacturing Reference Ontology
,”
IJPR
,
51
(
22
), pp.
6553
6572
.
46.
Hildebrandt
,
C.
,
Scholz
,
A.
,
Fay
,
A.
,
Schröder
,
T.
,
Hadlich
,
T.
,
Diedrich
,
C.
,
Dubovy
,
M.
,
Eck
,
C.
, and
Wiegand
,
R.
,
2017
, “
Semantic Modeling for Collaboration and Cooperation of Systems in the Production Domain
,”
ETFA
,
Limassol, Cyprus
,
Sept. 12–15
,
IEEE
,
New York
.
47.
Melkote
,
S. N.
,
2012
,
Development of iFAB Manufacturing Process and Machine Library
, Technical Report AFRL-RX-WP-TR-2012-0363, Georgia Institute of Technology.
48.
Borgo
,
S.
, and
Leitão
,
P.
,
2004
, “
The Role of Foundational Ontologies in Manufacturing Domain Applications
,”
OTM
,
Agia Napa, Cyprus
,
Oct. 25–29
.
49.
Borgo
,
S.
, and
Leitão
,
P.
,
2007
, “Foundations for a Core Ontology of Manufacturing,”
Ontologies
.
Springer
US, Boston, MA
, pp.
751
775
.
50.
Alsafi
,
Y.
, and
Vyatkin
,
V.
,
2010
, “
Ontology-Based Rreconfiguration Agent for Intelligent Mechatronic Systems in Flexible Manufacturing
,”
Rob. Comput.-Integr. Manuf.
,
26
(
4
), pp.
381
391
.
51.
Puttonen
,
J.
,
Lobov
,
A.
, and
Lastra
,
M.
,
2012
, “
Semantics-Based Composition of Factory Automation Processes Encapsulated by Web Services
,”
TII
,
9
(
4
), pp.
2349
2359
.
52.
Helbig
,
T.
,
Westkamper
,
E.
, and
Hoos
,
J.
,
2014
, “
Identifying Automation Components in Modular Manufacturing Systems: A Method for Modeling Dependencies of Manufacturing Systems
,”
ETFA
,
Barcelona, Spain
,
Sept. 16–19
.
53.
Ferrer
,
B. R.
,
Ahmad
,
B.
,
Lobov
,
A.
,
Vera
,
D. A.
,
Lastra
,
J. L. M.
, and
Harrison
,
R.
,
2015
, “
An Approach for Knowledge-Driven Product, Process and Resource Mappings for Assembly Automation
,”
CASE
,
Gothenburg, Sweden
,
Aug. 24–28
,
IEEE
,
New York
, pp.
1104
1109
.
54.
Criado
,
I. M.
,
Aleksandrov
,
K.
,
Navarro
,
S. E.
,
Georgoulias
,
K.
,
Henßen
,
R.
,
Pfrommer
,
J.
,
Ubis
,
F.
, and
Štogl
,
D.
,
2014
,
Skill-Extension of AML Standard
, SkillPro Deliverable D2.1.0, TECNALIA.
55.
Schleipen
,
M.
,
2014
, “
AutomationML to describe skills of production plants based on the PPR concept
,”
AutomationML user conference
,
Blomberg, Germany
,
Oct. 7–8
.
56.
Harcuba
,
O.
, and
Vrba
,
P.
,
2015
, “
Ontologies for flexible production systems
,”
ETFA
,
Luxembourg
,
Sept. 8–11
,
IEEE
,
New York
.
57.
Ameri
,
F.
, and
Dutta
,
D.
,
2006
, “
An Upper Ontology for Manufacturing Service Description
,”
IDETC/CIE
,
Philadelphia, PA
,
Sept. 10–13
,
ASME
,
New York
, pp.
651
661
.
58.
Ameri
,
F.
,
McArthur
,
C.
,
Asiabanpour
,
B.
, and
Hayasi
,
M.
,
2011
, “
A Web-based Framework for Semantic Supplier Discovery for Discrete Part Manufacturing
,”
NAMRI/SME
,
Corvallis, OR
,
June 13–17
.
59.
Ameri
,
F.
, and
McArthur
,
C.
,
2014
, “
Semantic Rule Modelling for Intelligent Supplier Discovery
,”
Int. J. Comput. Integr. Manuf.
,
27
(
6
), pp.
570
590
.
60.
Ameri
,
F.
,
2017
, “
Manufacturing Supply Chain Ontology – Experiences with BFO
,”
IDETC/CIE
,
Cleveland, OH
,
Aug. 6–9
.
61.
Sarkar
,
A.
, and
Sormaz
,
D.
,
2016
, “
Foundation Ontology for Distributed Manufacturing Process Planning
,”
IDETC/CIE
,
Charlotte, NC
,
Aug. 21–24
,
ASME
,
New York
.
62.
Legat
,
C.
,
Schütz
,
D.
, and
Vogel-Heuser
,
B.
,
2014
, “
Automatic Generation of Field Control Strategies for Supporting (Re-)Engineering of Manufacturing Systems
,”
J. Intell. Manuf.
,
25
(
5
), pp.
1101
1111
.
63.
Legat
,
C.
, and
Vogel-Heuser
,
B.
,
2017
, “
A Configurable Partial-Order Planning Approach for Field Level Operation Strategies of PLC-Based Industry 4.0 Automated Manufacturing Systems
,”
Eng. Appl. Artif. Intell.
66
, pp.
128
144
.
64.
Schlenoff
,
C. I.
,
Ivester
,
R. W.
, and
Knutilla
,
A.
,
1998
, “
A Robust Ontology for Manufacturing Systems Integration
,”
International Conference on Engineering Design and Automation
,
Maui, HI
,
Aug. 7–14
.
65.
Morbach
,
J.
,
Theißen
,
M.
, and
Marquardt
,
W.
,
2008
, “Integrated Application Domain Models for Chemical Engineering,”
Collaborative and Distributed Chemical Engineering From Understanding to Substantial Design Process Support
,
M.
Nagl
and
W.
Marquardt
, eds.
Springer
,
Berlin, Heidelberg
, pp.
169
182
.
66.
Morbach
,
J.
,
2009
, “
A Reusable Ontology for Computer-Aided Process Engineering
,” Ph.D. thesis,
Rheinisch-Westfälische Technische Hochschule Aachen
.
67.
Brandt
,
S. C.
,
Morbach
,
J.
,
Miatidis
,
M.
,
Theißen
,
M.
,
Jarke
,
M.
, and
Marquardt
,
W.
,
2008
, “
An Ontology-Based Approach to Knowledge Management in Design Processes
,”
Comput. Chem. Eng.
,
32
(
1-2
), pp.
320
342
.
68.
Muñoz
,
E.
,
Espuña
,
A.
, and
Puigjaner
,
L.
,
2010
, “
Towards An Ontological Infrastructure for Chemical Batch Process Management
,”
Comput. Chem. Eng.
,
34
(
5
), pp.
668
682
.
69.
International Society of Automation
,
2010
,
Batch Control
, Technical Report ANSI/ISA-88.
70.
Lepuschitz
,
W.
,
Groessing
,
B.
,
Axinia
,
E.
, and
Merdan
,
M.
,
2013
, “
Phase Agents and Dynamic Routing for Batch Process Automation
,”
HoloMAS
,
Prague, Czech Republic
,
Aug. 26–28
,
Springer
,
Berlin, Heidelberg
, pp.
37
48
.
71.
Lepuschitz
,
W.
,
Lobato-Jimenez
,
A.
,
Axinia
,
E.
, and
Merdan
,
M.
,
2015
, “
A Survey on Standards and Ontologies for Process Automation
,”
HoloMAS
,
Valencia, Spain
,
Sept. 2–3
,
Springer
, Cham, pp.
22
32
.
72.
Smith
,
Barry
,
2006
, “
Against Idiosyncrasy in Ontology Development
,”
Conference on Formal Ontology in Information Systems
,
Amsterdam, Netherlands
.
73.
He
,
B.
, and
Feng
,
P.
,
2013
, “
Guiding Conceptual Design Through Functional Space Exploration
,”
Int. J. Adv. Manuf. Tech.
,
66
(
9-12
), pp.
1999
2011
.
74.
He
,
B.
,
Song
,
W.
, and
Wang
,
Y.
,
2015
, “
Computational Conceptual Design Using Space Matrix
,”
ASME J Comput. Inf. Sci Eng.
15
(
1
), p.
011004
.
75.
Vogel-Heuser
,
B.
,
Legat
,
C.
,
Folmer
,
J.
, and
Feldmann
,
S.
,
2014
, “
Researching Evolution in Industrial Plant Automation
,” Technical Report.
76.
VDI/VDE
,
2015
, “
Formalised Process Descriptions – Information Model – VDI/VDE 3682
,” Technical Report.
77.
Christiansen
,
L.
,
Fay
,
A.
,
Opgenoorth
,
B.
, and
Neidig
,
J.
,
2011
, “
Improved Diagnosis by Combining Structural and Process Knowledge
,”
ETFA
,
Toulouse, France
,
Sept. 5–9
,
IEEE
,
New York
.
78.
Hitzler
,
P.
,
Krötzsch
,
M.
, and
Rudolph
,
S.
,
2010
,
Foundations of Semantic Web Technologies
,
Chapman & Hall/CRC
,
Boca Raton
.
79.
Ameri
,
F.
, and
Allen
,
S.
,
2013
, “An Ontological Approach to Integrated Product and Process Knowledge Modeling for Intelligent Design Repositories,”
Smart Product Engineering
,
M.
Abramovici
and
R.
Stark
, eds.,
Springer
,
Berlin, Heidelberg
, pp.
825
834
.
80.
Feldmann
,
S.
,
Herzig
,
S. J. I.
,
Kernschmidt
,
K.
,
Wolfenstetter
,
T.
,
Kammerl
,
D.
,
Qamar
,
A.
,
Lindemann
,
U.
,
Krcmar
,
H.
,
Paredis
,
C. J. J.
, and
Vogel-Heuser
,
B.
,
2015
, “
A Comparison of Inconsistency Management Approaches Using a Mechatronic Manufacturing System Design Case Study
,”
CASE
,
Gothenburg, Sweden
,
Aug. 24–28
,
IEEE
,
New York
.
81.
Herzig
,
S. J. I.
,
Qamar
,
A.
, and
Paredis
,
C. J. J.
,
2014
, “
An Approach to Identifying Inconsistencies in Model-based Systems Engineering
,”
Proc. Comput. Sci.
28
, pp.
354
362
.
82.
Mesmer
,
L.
, and
Olewnik
,
A.
,
2017
, “
Enabling Supplier Discovery Through a Part-Focused Manufacturing Process Ontology
,”
Int. J. Comput. Integr. Manuf.
,
31
(
1
), pp.
87
100
.
You do not currently have access to this content.