The accuracy of conventional crane engineering problems with bounded uncertainty is limited to cases where only first-order terms are retained. However, the impact of high-order terms on the luffing angular response (LAR) may be significant when it comes to compound functions. A modified first-order compound-function-based interval perturbation method (MFCFIPM) is proposed for the prediction of the LAR field of a dual automobile crane system (DACS) with narrowly bounded uncertainty. In an interval model, all uncertain variables with bounded uncertainty comprise an interval vector. The equilibrium equations of the interval LAR vectors of the DACS are established based on the interval model. The MFCFIPM employs the surface rail generation method to expand the compound-function-based vectors. A modified Sherman–Morrison–Woodbury formula is introduced to analyze the impact of the high-order terms of the Neumann series expansion on the LAR field. Several numerical examples are presented to verify the accuracy and the feasibility of the MFCFIPM. The results show that the MFCFIPM can achieve a better accuracy than the first-order compound-function-based interval perturbation method and a higher efficiency than the Monte Carlo method for the LAR field problem with narrow interval variables. The effects of different numbers of interval variables on the LAR field by the MFCFIPM are also investigated.

References

References
1.
Leban
,
F.
,
2008
, “
Coordinated Control of A Planar Dual-Crane Non-Fully Restrained System
,”
Ph.D. Dissertation
,
Dept. Mechanical & Aerospace Eng., Naval Postgraduate School
,
Monterey
,
CA
.
2.
Leban
,
F.
,
Gonzalez
,
J.
, and
Parker
,
G.
,
2015
, “
Inverse Kinematic Control of A Dual Crane System Experiencing Base Motion
,”
IEEE Trans. Control Syst. Technol.
,
23
, pp.
331
339
.
3.
Qian
,
S.
,
Zi
,
B.
,
Shang
,
W. W.
, and
Xu
,
Q. S.
,
2018
, “
A Review on Cable-Driven Parallel Robots
,”
Chinese J. Mech. Eng.
,
31
(
66
), pp.
1
11
.
4.
Zi
,
B.
, and
Zhou
,
B.
,
2016
, “
A Modified Hybrid Uncertain Analysis Method for Dynamic Response Field of the LSOAAC With Random and Interval Parameters
,”
J. Sound Vib.
,
374
, pp.
111
137
.
5.
Zhou
,
B.
,
Zi
,
B.
, and
Qian
,
S.
,
2017
, “
Dynamics-Based Nonsingular Interval Model and Luffing Angular Response Field Analysis of the DACS With Narrowly Bounded Uncertainty
,”
Nonlinear Dyn.
,
90
, pp.
2599
2626
.
6.
George
,
S.
,
2009
, “
The Stochastic Finite Element Method: Past, Present and Future
,”
Comput. Methods Appl. Mech. Eng.
,
198
, pp.
1031
1051
.
7.
Moens
,
D.
, and
Vandepitte
,
D.
,
2006
, “
Recent Advances in Non-Probabilistic Approaches for Non-Deterministic Dynamic Finite Element Analysis
,”
Finite Elem. Anal. Des.
,
13
(
3
), pp.
389
464
.
8.
Yuan
,
X.
, and
Lu
,
Z.
,
2014
, “
Efficient Approach for Reliability-Based Optimization Based on Weighted Importance Sampling Approach
,”
Reliab. Eng. Syst. Safety
,
132
, pp.
107
114
.
9.
Talha
,
M.
, and
Singh
,
B. N.
,
2014
, “
Stochastic Perturbation-Based Finite Element for Buckling Statistics of FGM Plates With Uncertain Material Properties in Thermal Environments
,”
Comp. Struct.
,
108
, pp.
823
833
.
10.
To
,
C. W. S.
,
2007
, “
Large Nonlinear Responses of Spatially Nonhomogeneous Stochastic Shell Structures Under Nonstationary Random Excitations
,”
ASME J. Comput. Inform. Sci. Eng.
,
9
(
4
), p.
041002
.
11.
Stuhlenmiller
,
F.
,
Schuy
,
J.
, and
Beckerle
,
P.
,
2017
, “
Probabilistic Elastic Element Design for Robust Natural Dynamics of Structure-Controlled Variable Stiffness Actuators
,”
J. Mech. Robot.
,
10
(
1
), 011009.
12.
Kamiński
,
K.
,
2015
, “
Iterative Scheme in Determination of the Probabilistic Moments of the Structural Response in the Stochastic Perturbation-Based Boundary Element Method
,”
Comput. Struct.
,
151
, pp.
86
95
.
13.
Nouy
,
A.
,
2008
, “
Generalized Spectral Decomposition Method for Solving Stochastic Finite Element Equations: Invariant Subspace Problem and Dedicated Algorithms
,”
Comput. Methods Appl. Mech. Eng.
,
197
, pp.
4718
4736
.
14.
Gao
,
W.
,
Wu
,
D.
, and
Song
,
C. M.
,
2011
, “
Hybrid Probabilistic Interval Analysis of Bar Structures with Uncertainty Using A Mixed Perturbation Monte-Carlo Method
,”
Finite Elem. Anal. Des.
,
47
, pp.
643
652
.
15.
Ben-Haim
,
Y.
, and
Elishakoff
,
I.
,
1990
,
Convex Models of Uncertainty in Applied Mechanics
,
Elsevier
,
Amsterdam
.
16.
Qiu
,
Z. P.
,
Xia
,
Y.
, and
Yang
,
J.
,
2007
, “
The Static Displacement and the Stress Analysis of Structures With Bounded Uncertainties Using the Vertex Solution Theorem
,”
Comput. Method Appl. Mech. Eng.
,
196
, pp.
4965
4984
.
17.
Impollonia
,
N.
, and
Muscolino
,
G.
,
2011
, “
Interval Analysis of Structures With Uncertain-But-Bounded Axial Stiffness
,”
Comput. Methods Appl. Mech. Eng.
,
200
, pp.
1945
1962
.
18.
Notash
,
L.
,
2016
, “
On the Solution Set for Positive Wire Tension With Uncertainty in Wire-Actuated Parallel Manipulators
,”
ASME J. Mech. Robot.
,
8
(
4
), p. 044506.
19.
Qiu
,
Z. P.
,
Chen
,
S.
, and
Elishakoff
,
I.
,
1996
, “
Bounds of Eigenvalues for Structures With An Interval Description of Uncertain-But-Non-Random Parameters
,”
Chaos Solitons Fract.
,
7
(
3
), pp.
425
434
.
20.
Qiu
,
Z. P.
, and
Elishakoff
,
I.
,
1998
, “
Anti-Optimization of Structures with Large Uncertain-But-Non-Random Parameters via Interval Analysis
,”
Comput. Methods Appl. Mech. Eng.
,
152
, pp.
361
372
.
21.
Wang
,
C.
, and
Qiu
,
Z. P.
,
2015
, “
Interval Analysis of Steady-State Heat Convection-Diffusion Problem With Uncertain-But-Bounded Parameters
,”
Int. J. Heat Mass Transf.
,
91
, pp.
355
362
.
22.
Wang
,
C.
, and
Qiu
,
Z. P.
,
2014
, “
An Interval Perturbation Method for Exterior Acoustic Field Prediction With Uncertain-But-Bounded Parameters
,”
J. Fluids Struct.
,
49
, pp.
441
449
.
23.
Xia
,
B. Z.
, and
Yu
,
D. J.
,
2013
, “
Modified Interval Perturbation Finite Element Method for A Structural-Acoustic System With Interval Parameters
,”
ASME J. Appl. Mech.
,
80
(
4
), p.
044050
.
24.
Xia
,
B. Z.
, and
Yu
,
D. J.
,
2012
, “
Modified Sub-Interval Perturbation Finite Element Method for 2D Acoustic Field Prediction With Large Uncertain-But-Bounded Parameters
,”
J. Sound Vib.
,
331
, pp.
3774
3790
.
25.
Wang
,
C.
, and
Qiu
,
Z. P.
,
2016
, “
Subinterval Perturbation Methods for Uncertain Temperature Field Prediction With Large Fuzzy Parameters
,”
Int. J. Therm. Sci.
,
100
, pp.
381
390
.
26.
Wang
,
C.
, and
Qiu
,
Z. P.
,
2015
, “
Hybrid Uncertain Analysis for Steady-State Heat Conduction With Random and Interval Parameters
,”
Int. J. Heat Mass Transf.
,
80
, pp.
319
328
.
27.
Wang
,
C.
,
Qiu
,
Z. P.
, and
Yang
,
Y. W.
,
2016
, “
Collocation Methods for Uncertain Heat Convection-Diffusion Problem With Interval Input Parameters
,”
Int. J. Therm. Sci.
,
107
, pp.
230
236
.
28.
Muscolino
,
G.
, and
Sofi
,
A.
,
2015
, “
Static Analysis of Euler-Bernoulli Beams with Interval Young’s Modulus
,”
Comput. Struct.
,
156
, pp.
72
82
.
29.
Muscolino
,
G.
,
Santoro
,
R.
, and
Sofi
,
A.
,
2014
, “
Explicit Frequency Response Functions of Discretized Structures with Uncertain Parameters
,”
Comput. Struct.
,
133
, pp.
64
78
.
30.
Sherman
,
J.
, and
Morrison
,
W.
,
1950
, “
Adjustment of An Inverse Matrix Corresponding to A Change in One Element of A Given Matrix
,”
Ann. Math. Stat.
,
21
, pp.
124
127
.
31.
Impollonia
,
N.
,
2006
, “
A Method to Derive Approximate Explicit Solutions for Structural Mechanics Problems
,”
Int. J. Solids Struct.
,
43
, pp.
7082
7098
.
32.
Wang
,
S. B.
, and
Qing
,
X. Y.
,
2016
, “
A Mixed Interval Arithmetic/Affine Arithmetic Approach for Robust Design Optimization With Interval Uncertainty
,”
ASME J. Mech. Des.
,
138
(
4
), p.
041403
.
33.
Du
,
X. P.
,
Sudjianto
,
A.
, and
Huang
,
B.
,
2005
, “
Reliability-Based Design With the Mixture of Random and Interval Variables
,”
ASME J. Mech. Des.
,
127
(
6
), pp.
1068
1076
.
You do not currently have access to this content.