The interconnection and interworking, a process of data interaction among different levels in manufacturing enterprises, are the core of realizing intelligent manufacturing. This paper focuses on the modeling of the interconnection-related information in product manufacturing and develops an info-interconnect model (IIM) in product manufacturing based on a widespread research of various informational aspects in the business logic of the digital workshop of manufacturing enterprises. The developed IIM, which describes the product data structure and the organizational logic of the production process, follows a layered modeling methodology in which IIM is subdivided into layers with the main purpose to separate entities, rules, workflow, and application into different levels. Then, based on resource-driven mechanism, business processes are modeled by directed acyclic graphs (i.e., PR-AOV network and PR-AOE network), incidence matrix of resources, and set of resources availability in order to improve the management and control of workflow, and to provide basis for dynamic scheduling of workshop. Finally, workshop layer application and control layer application have been incorporated to validate the usability and applicability of the developed IIM. This new info-interconnect model paves the way for the assurance of data consistency, the development of fully integrated manufacturing workflow, and the rapid deployment of efficient business logic in a manufacturing workshop.

References

References
1.
Lasi
,
H.
,
Fettke
,
P.
,
Kemper
,
H. G.
,
Feld
,
T.
, and
Hoffmann
,
M.
,
2014
, “
Industry 4.0. Business & Information
,”
Syst. Eng.
,
6
(
4
), pp.
239
242
.
2.
Zhong
,
R. Y.
,
Xu
,
X.
,
Klotz
,
E.
, and
Newman
,
S. T.
,
2017
, “
Intelligent Manufacturing in the Context of Industry 4.0: A Review
,”
Engineering
,
3
(
5
), pp.
616
630
.
3.
Kang
,
H. S.
,
Lee
,
J. Y.
,
Choi
,
S.
,
Kim
,
H.
,
Park
,
J. H.
,
Son
,
J. Y.
,
Kim
,
B. H.
, and
Noh
,
S. D.
,
2016
, “
Smart Manufacturing: Past Research, Present Findings, and Future Directions
,”
Int. J. Precis. Eng. Manuf. Green Technol.
,
3
(
1
), pp.
111
123
.
4.
Liu
,
R.
,
Zhang
,
C.
,
Jiang
,
Y.
, and
Wang
,
K.
,
2013
, “
Networked Monitoring of NC Machine Tools Based on MTConnect
,”
J. Comput. Inf. Sci. Eng.
,
19
(
5
), pp.
1078
1084
.
5.
Edrington
,
B.
,
Zhao
,
B.
,
Hansel
,
A.
,
Mori
,
M.
, and
Fujishima
,
M.
,
2014
, “
Machine Monitoring System Based on MTConnect Technology
,”
Proc. CIRP
,
22
(
5
), pp.
92
97
.
6.
Skripcak
,
T.
,
Tanuska
,
P.
,
Konrad
,
U.
, and
Schmeisser
,
N.
,
2013
, “
Toward Nonconventional Human–Machine Interfaces for Supervisory Plant Process Monitoring
,”
IEEE Trans. Human-Mach. Syst.
,
43
(
5
), pp.
437
450
.
7.
Wang
,
M.
,
Cao
,
P.
,
Song
,
K.
,
Zhu
,
G.
,
Zhang
,
W.
, and
Zhao
,
Q.
,
2018
, “
Information Interaction Model of Digital Workshop Based on OPC UA for CNC Machine Tools Manufacturing
,”
J. Beijing Univ. Technol.
,
44
(
7
), pp.
1040
1046
.
8.
Chen
,
F. F.
,
Ker
,
J. L.
, and
Kleawpatinon
,
K.
,
1995
, “
An Effective Part-Selection Model for Production Planning of Flexible Manufacturing Systems
,”
Int. J. Prod. Res.
,
33
(
10
), pp.
2671
2683
.
9.
Roy
,
U.
, and
Sarigecili
,
M. I.
,
2016
, “
Information Models for Processing Product Lifecycle Functionalities and Interfaces for Sustainable Manufacturing
,”
J. Comput. Inf. Sci. Eng.
,
16
(
1
), p.
011005
.
10.
Liu
,
Y.
,
Xu
,
X.
,
Zhang
,
L.
, and
Tao
,
F.
,
2016
, “
An Extensible Model for Multitask-Oriented Service Composition and Scheduling in Cloud Manufacturing
,”
J. Comput. Inf. Sci. Eng.
,
16
(
4
), p.
041009
.
11.
Pu
,
Z.
,
Jiang
,
Q.
,
Yue
,
H.
, and
Tsaptsinos
,
M.
,
2018
, “
Agent-Based Supply Chain Allocation Model and Its Application in Smart Manufacturing Enterprises
,”
J. Supercomput.
, pp.
1
11
.
12.
Feng
,
S. C.
,
Bernstein
,
W. Z.
,
Hedberg
,
T.
, and
Feeney
,
A. B.
,
2017
, “
Toward Knowledge Management for Smart Manufacturing
,”
J. Comput. Inf. Sci. Eng.
,
17
(
3
), p.
031016
.
13.
Hedberg
,
T.
,
Feeney
,
A. B.
,
Helu
,
M.
, and
Camelio
,
J. A.
,
2017
, “
Towards a Lifecycle Information Framework and Technology in Manufacturing
,”
J. Comput. Inf. Sci. Eng.
,
17
(
2
), p.
021010
.
14.
Wienke
,
M.
,
Niggemann
,
O.
,
Faltinski
,
S.
, and
Jasperneite
,
J.
,
2011
, “
mINA-DL: A Novel Description Language Enabling Dynamic Reconfiguration in Industrial Automation
,”
Nonlinearity
,
25
(
5
), pp.
1
4
.
15.
Kulvatunyou
,
B. S.
,
Ivezic
,
N.
, and
Srinivasan
,
V.
,
2016
, “
On Architecting and Composing Engineering Information Services to Enable Smart Manufacturing
,”
J. Comput. Inf. Sci. Eng.
,
16
(
3
), p.
031002
.
16.
Zurita
,
N. S.
,
Colby
,
M. K.
,
Tumer
,
I. Y.
,
Hoyle
,
C.
, and
Tumer
,
K.
,
2018
, “
Design of Complex Engineered Systems Using Multi-Agent Coordination
,”
J. Comput. Inf. Sci. Eng.
,
18
(
1
), p.
011003
.
17.
Zezulka
,
F.
,
Marcon
,
P.
,
Vesely
,
I.
, and
Sajdl
,
O.
,
2016
, “
Industry 4.0—An Introduction in the Phenomenon
,”
IFAC PapersOnLine
,
49
(
25
), pp.
8
12
.
18.
Hankel
,
N.
, and
Rexroth
,
B.
,
2015
, “
The Reference Architectural Model Industrie 4.0 (RAMI 4.0)
,”
ZVEI
.
19.
Frysak
,
J.
,
Kaar
,
C.
, and
Stary
,
C.
,
2018
, “
Benefits and Pitfalls Applying RAMI 4.0
,”
2018 IEEE Industrial Cyber-Physical Systems (ICPS)
,
Saint Petersburg, Russia
,
May 15–18
, pp.
32
37
.
20.
Chavez
,
J. B.
,
Kecskemeti
,
G.
,
Tountopoulos
,
V.
,
Kavakli
,
E.
, and
Sakellariou
,
R.
,
2018
, “
Towards a Methodology for RAMI 4.0 Service Design
,”
2018 Sixth International Conference on Enterprise Systems (ES)
,
Limassol, Cyprus
,
Oct. 8–9
, pp.
188
195
.
21.
MIIT, and SAC
,
2018
, “
Guidelines for the Construction of National Intelligent Manufacturing Standard System
,”
MIIT
.
22.
Joglekar
,
G. S.
,
Giridhar
,
A.
, and
Reklaitis
,
G.
,
2014
, “
A Workflow Modeling System for Capturing Data Provenance
,”
Comput. Chem. Eng.
,
67
, pp.
148
158
.
23.
Lee
,
H.
, and
Suh
,
H. W.
,
2006
, “
Workflow Structuring and Reengineering Method for Design Process
,”
Comput. Ind. Eng.
,
51
(
4
), pp.
698
714
.
24.
Yu
,
Z.
, and
Sun
,
J.
,
2013
, “
Research and Design of Lightweight Workflow Model Based on Improved Activity-On-Vertex Network
,”
J. Comput. Appl.
,
33
(
1
), pp.
262
265
.
25.
Galster
,
M.
, and
Avgeriou
,
P.
,
2012
, “
A Variability Viewpoint for Enterprise Software Systems
,”
Joint Working IEEE/IFIP Conference on Software Architecture (WICSA 2012) & European Conference on Software Architecture (ECSA 2012)
,
Helsinki, Finland
,
Aug. 20–24
, pp.
267
271
.
26.
Zhu
,
B.
,
2016
, “
An Information Model in the Domain of Disassembly Planning for Sustainable Manufacturing
,” Ph.D. thesis,
Syracuse University
,
Syacuse, NY
.
27.
Burr
,
H.
,
Mueller
,
M.
, and
Vielhaber
,
M.
,
2007
, “
Eims—A Framework for Engineering Process Analysis
,”
International Conference on Engineering Design (ICED 2007)
,
Paris, France
,
July 28–31
, pp.
1
8
.
28.
Stanev
,
S.
,
Walla
,
W.
,
Awad
,
R.
,
Bittel
,
V.
, and
Ovtcharova
,
J.
,
2009
, “
Lifecycle Oriented Information Model to Support the Production Driven Product Validation
,”
Adv. Intell. Soft Comput.
,
66
, pp.
277
288
.
29.
Freeman
,
A.
,
2012
, “Pro ASP.NET MVC 4,” Apress.
30.
Talhi
,
A.
,
Fortineau
,
V.
,
Huet
,
J. C.
, and
Lamouri
,
S.
,
2017
, “
Ontology for Cloud Manufacturing Based Product Lifecycle Management
,”
J. Intell. Manuf.
, pp.
1
22
.
31.
Zhu
,
B.
, and
Roy
,
U.
,
2018
, “
Modeling and Validation of a Web Ontology Language Based Disassembly Planning Information Model
,”
J. Comput. Inf. Sci. Eng.
,
18
(
2
), p.
021015
.
You do not currently have access to this content.