Routing or path-planning is the problem of finding a collision-free and preferably shortest path in an environment usually scattered with polygonal or polyhedral obstacles. The geometric algorithms oftentimes tackle the problem by modeling the environment as a collision-free graph. Search algorithms such as Dijkstra’s can then be applied to find an optimal path on the created graph. Previously developed methods to construct the collision-free graph, without loss of generality, explore the entire workspace of the problem. For the single-source single-destination planning problems, this results in generating some unnecessary information that has little value and could increase the time complexity of the algorithm. In this paper, first a comprehensive review of the previous studies on the path-planning subject is presented. Next, an approach to address the planar problem based on the notion of convex hulls is introduced and its efficiency is tested on sample planar problems. The proposed algorithm focuses only on a portion of the workspace interacting with the straight line connecting the start and goal points. Hence, we are able to reduce the size of the roadmap while generating the exact globally optimal solution. Considering the worst case that all the obstacles in a planar workspace are intersecting, the algorithm yields a time complexity of O(n log(n/f)), with n being the total number of vertices and f being the number of obstacles. The computational complexity of the algorithm outperforms the previous attempts in reducing the size of the graph yet generates the exact solution.

References

References
1.
Matheus
,
K.
, and
Konigseder
,
T.
,
2015
,
Automotive Ethernet
,
Cambridge University Press
,
Cambridge
.
2.
Latombe
,
J.-C.
,
1991
,
Robot Motion Planning
,
Kluwer Academic Publishers
,
Boston
.
3.
Erickson
,
L. H.
, and
Lavalle
,
S. M.
,
2013
, “
A Simple, But NP-Hard, Motion Planning Problem
,”
27th AAAI Conference on Artificial Intelligence
,
Bellevue, WA
.
4.
Flood
,
M. M.
,
1956
, “
The Traveling Salesman Problem
,”
Oper. Res
,
4
(
1
), pp.
61
75
.
5.
Kang
,
S.
,
Sehyun
,
M.
, and
Han
,
S.
,
1999
, “
A Design Expert System for Auto-Routing of Ship Pipes
,”
J. Sh. Prod.
,
15
(
1
), pp.
1
9
.
6.
Guirardello
,
R.
, and
Swaney
,
R. E.
,
2005
, “
Optimization of Process Plant Layout With Pipe Routing
,”
Comput. Chem. Eng.
,
30
(
1
), pp.
99
114
.
7.
Pollack
,
M.
, and
Wiebenson
,
W.
,
1960
, “
Solutions of the Shortest-Route Problem-A Review
,”
Oper. Res.
,
8
(
2
), pp.
224
230
.
8.
Souissi
,
O.
,
Benatitallah
,
R.
,
Duvivier
,
D.
, and
Artiba
,
A.
,
2013
, “
Path Planning : A 2013 Survey
,”
Proceedings of 2013 International Conference on Industrial Engineering and Systems Management (IESM)
,
Rabat, Morocco
,
Oct. 28–30
,
IEEE
,
New York
, pp.
1
8
.
9.
Raja
,
P.
, and
Pugazhenthi
,
S.
,
2012
, “
Optimal Path Planning of Mobile Robots : A Review
,”
Int. J. Phys. Sci.
,
7
(
9
), pp.
1314
1320
.
10.
Masehian
,
E.
, and
Sedighizadeh
,
D.
,
2007
, “
Classic and Heuristic Approaches in Robot Motion Planning—A Chronological Review
,”
World Acad. Sci. Eng. Technol.
,
29
(
1
), pp.
101
106
.
11.
O’Rourke
,
J.
,
1998
,
Computational Geometry in C
,
2nd ed.
,
Cambridge University Press
,
New York
.
12.
Nilsson
,
N. J.
,
1969
, “
A Mobile Automation: An Application of Artificial Intelligence Techniques
,”
Proceedings of the Fifth International Joint Conference on Artificial Intelligence
,
Washington, DC
,
May 7–9
.
13.
Wangdahl
,
G. E.
,
Pollock
,
S. M.
, and
Woodward
,
J. B.
,
1974
, “
Minimum-Trajectory Pipe Routing
,”
J. Sh. Res.
,
18
(
1
), pp.
46
49
.
14.
Lozano-Pérez
,
T.
, and
Wesley
,
M. A.
,
1979
, “
An Algorithm for Planning Collision-Free Paths Among Polyhedral Obstacles
,”
Commun. ACM
,
22
(
10
), pp.
560
570
.
15.
Ma
,
Y.
,
Zheng
,
G.
, and
Perruquetti
,
W.
,
2013
, “
Cooperative Path Planning for Mobile Robots Based on Visibility Graph
,”
Proceedings of the 32nd Chinese Control Conference (CCC)
,
Xi'an, China
,
July 26
.
16.
Papadimitriou
,
C. H.
,
1985
, “
An Algorithm for Shortest-Path Motion in Three Dimensions
,”
Inf. Process. Lett.
,
20
(
5
), pp.
259
263
.
17.
Gao
,
B.
,
Xu
,
D.
,
Zhang
,
F.
, and
Yao
,
Y.
,
2009
, “
Constructing Visibility Graph and Planning Optimal Path for Inspection of 2D Workspace
,”
IEEE International Conference on Intelligent Computing and Intelligent Systems (ICIS)
,
Shanghai, China
,
Nov. 20–22
.
18.
Udupa
,
S. M.
,
1977
,
Collision Detection and Avoidance in Computer Controlled Manipulators
, Ph.d. thesis,
California Institute of Technology
,
Pasadena, CA
.
19.
Hahmann
,
S.
,
Miksch
,
J.
,
Resch
,
B.
,
Lauer
,
J.
, and
Zipf
,
A.
,
2018
, “
Routing Through Open Spaces—a Performance Comparison of Algorithms
,”
Geo-spatial Information Science
,
21
(
3
), pp.
247
256
.
20.
Lee
,
D.-T.
,
1978
, “
Proximity and Reachability in The Palne
,”
Ph.D. thesis
,
Illinois University at Urbana–Champaign Coordinated Science Laboratory
,
Urbana, IL
.
21.
Welzl
,
E.
,
1985
, “
Constructing the Visibility Graph for n-Line Segments in O (n2) Time
,”
Inf. Process. Lett.
,
20
(
4
), pp.
167
171
.
22.
Asano
,
T.
,
Asano
,
T.
,
Guibas
,
L.
,
Hershberger
,
J.
, and
Imai
,
H.
,
1985
, “
Visibility-Polygon Search and Euclidean Shortest Paths
,”
26th Annual Symposium on Foundations of Computer Science (sfcs 1985)
,
Portland, OR
,
Oct. 21–23
.
23.
Asano
,
T.
,
Asano
,
T.
,
Guibas
,
L.
,
Hershberger
,
J.
, and
Imai
,
H.
,
1986
, “
Visibility of Disjoint Polygons
,”
Algorithmica
,
1
(
1–4
), pp.
49
63
.
24.
Ghosh
,
S. K.
, and
Mount
,
D. M.
,
1991
, “
An Output Sensitive Algorithm for Computing Visibility Graphs
,”
SIAM J. Comput.
,
20
(
5
), pp.
888
910
.
25.
Kapoor
,
S.
, and
Maheshwari
,
S. N.
,
2000
, “
Efficiently Constructing the Visibility Graph of a Simple Polygon With Obstacles
,”
SIAM J. Comput.
,
30
(
3
), pp.
847
871
.
26.
Sharir
,
M.
, and
Schorr
,
A.
,
1986
, “
On Shortest Paths in Polyhedral Spaces
,”
SIAM J. Comput.
,
15
(
1
), pp.
193
215
.
27.
Storer
,
J. A.
, and
Reif
,
J. H.
,
1994
, “
Shortest Paths in the Plane With Polygonal Obstacles
,”
Inf. Process. Lett.
,
23
(
5
), pp.
982
1012
.
28.
Chazelle
,
B.
,
1982
, “
A Theorem on Polygon Cutting with Applications
,”
23rd Annual Symposium on Foundations of Computer Science, (SFCS ’08)
,
Chicago, IL
,
Nov. 3–5
.
29.
Wein
,
R.
,
Van den Berg
,
J. P.
, and
Halperin
,
D.
,
2007
, “
The Visibility—Voronoi Complex and Its Applications
,”
Comp. Geom.
,
36
(
1
), pp.
66
87
.
30.
Hershberger
,
J.
, and
Guibas
,
L. J.
,
1988
, “
An O(n2) Shortest Path Algorithm for a Non-Rotating Convex Body
,”
J. Algorithms
,
9
(
1
), pp.
18
46
.
31.
Rohnert
,
H.
,
1986
, “
Shortest Paths in the Plane With Convex Polygonal Obstacles
,”
Inf. Process. Lett.
,
23
(
2
), pp.
71
76
. .
32.
Priya
,
T. K.
, and
Sridharan
,
K.
,
2004
, “
An Efficient Algorithm to Construct Reduced Visibility Graph and its FPGA Implementation
,”
Proceedings of the 17th International Conference on VLSI Design
,
Mumbai, India
,
Jan. 9
.
33.
Jan
,
G. E.
,
Sun
,
C.
,
Tsai
,
W. C.
, and
Lin
,
T.
,
2014
, “
An O (n log n) Shortest Path Algorithm Based on Delaunay Triangulation
,”
660 IEEE/ASME Trans. Mechatronics
,
19
(
2
), pp.
660
666
.
34.
Pillai
,
A. C.
,
Chick
,
J.
,
Johanning
,
L.
,
Khorasanchi
,
M.
, and
Laleu
,
V. D.
,
2015
, “
Offshore Wind Farm Electrical Cable Layout Optimization
,”
Eng. Optim.
,
47
(
12
), pp.
1689
1708
.
35.
Jafarzadeh
,
H.
, and
Fleming
,
C. H.
,
2018
, “
An Exact Geometry-Based Algorithm for Path Planning
,”
Int. J. Appl. Math. Comput. Sci.
,
28
(
3
), pp.
493
504
.
36.
Huang
,
H.-P.
, and
Chung
,
S.-Y.
,
2004
, “
Dynamic Visibility Graph for Path Planning
,”
IEEE/RSJ International Conference on Intelligent Robots and Systems
,
Sendai, Japan
,
Sept. 28–Oct. 2
.
37.
Toan
,
T. Q.
,
Sorokin
,
A. A.
,
Thi
,
V.
, and
Trang
,
H.
,
2017
, “
Using Modification of Visibility-Graph in Solving the Problem of Finding Shortest Path for Robot
,”
International Siberian Conference on Control and Communications (SIBCON)
,
Russia
,
June 29–30
,
IEEE
.
38.
Badariyah
,
N.
,
Latip
,
A.
,
Omar
,
R.
, and
Debnath
,
S. K.
,
2017
, “
Optimal Path Planning Using Equilateral Spaces Oriented Visibility Graph Method
,”
Int. J. Electr. Comput. Eng.
,
7
(
6
), pp.
3046
3051
.
39.
Gasilov
,
N.
,
Doğan
,
M.
, and
Arici
,
V.
,
2011
, “
Two-Stage Shortest Path Algorithm for Solving Optimal Obstacle Avoidance Problem Two-Stage Shortest Path Algorithm for Solving Optimal Obstacle Avoidance Problem
,”
IETE J. Res.
,
57
(
3
), pp.
278
285
.
40.
Graser
,
A.
,
2016
, “
Integrating Open Spaces Into OpenStreetMap Routing Graphs for Realistic Crossing Behaviour in Pedestrian Navigation
,”
Int. J. Geogr. Inf. Sci.
,
4
(
1
),
217
230
.
41.
Garrido
,
S.
,
Moreno
,
L.
,
Abderrahim
,
M.
, and
Martin
,
F.
,
2006
, “
Path Planning for Mobile Robot Navigation Using Voronoi Diagram and Fast Marching
,”
Proceedings of the 2006 IEEE/RSJ International Conference on Intelligent Robots and Systems
,
Beijing, China
,
Oct. 9
.
42.
Ó’Dúnlaing
,
C.
, and
Yap
,
C. K.
,
1985
, “
A ‘Retraction’ Method for Planning the Motion of a Disc
,”
J. Algorithms
,
6
(
1
), pp.
104
111
.
43.
Brooks
,
R. A.
,
1983
, “
Solving the Find-Path Problem by Good Representation of Free Space
,”
IEEE Trans. Syst. Man. Cybern.
,
13
(
3
), pp.
190
197
.
44.
Leven
,
D.
, and
Sharir
,
M.
,
1987
, “
Planning a Purely Translational Motion for a Convex Object in Two-Dimensional Space Using Generalized Voronoi Diagrams
,”
Discrete Comput. Geom.
,
2
(
1
), pp.
9
31
.
45.
Zhang
,
L.
, and
Manocha
,
D.
,
2008
, “
An Efficient Retraction-Based RRT Planner
,”
IEEE International Conference on Robotics and Automation
,
Pasadena, CA
,
May 19–23
.
46.
Takahashi
,
O.
, and
Schilling
,
R. J.
,
1989
, “
Motion Planning in a Plane Using Generalized Voronoi Diagrams
,”
IEEE Trans. Robot. Autom.
,
5
(
2
), pp.
143
150
.
47.
Alt
,
H.
, and
Yap
,
C. K.
,
1989
, “
Algorithmic Aspect of Motion Planning: A Tutorial
,”
Algorithms Review
, pp.
173
196
.
48.
Bhattacharya
,
P.
, and
Gavrilova
,
M. L.
,
2007
, “
Geometric Algorithms for Clearance Based Optimal Path Computation
,”
Proceedings of the 15th Annual ACM International Symposium on Advances in Geographic Information Systems
,
Seattle, WA
,
Nov. 7–9
.
49.
Overmars
,
M. H.
,
1992
,
A Random Approach to Motion Planning
,
First
, Vol.
92
,
Department of Computer Science, Utrecht University
,
Utrecht, The Netherlands
, pp.
1
24
. Technical Report RUU-CS-92-32.
50.
Geraerts
,
R.
, and
Overmars
,
M. H.
,
2004
, “
A Comparative Study of Probabilistic Roadmap Planners
,”
Algorithmic Foundations of Robotics V
,
7
, pp.
43
57
.
51.
Kavraki
,
L. E.
,
Svestka
,
P.
,
Latombe
,
J.-C.
, and
Overmars
,
M. H.
,
1996
, “
Probabilistic Roadmaps for Path Planning in High-Dimensional Configuration Spaces
,”
IEEE Trans. Robot. Autom.
,
12
(
4
), pp.
566
580
.
52.
Bohlin
,
R.
, and
Kavraki
,
L. E.
,
2000
, “
Path Planning Using Lazy PRM
,”
IEEE International Conference on Robotics and Automation, Proceedings (ICRA’00)
,
San Francisco, CA
,
April 24–28
.
53.
Kavraki
,
L.
, and
Lat
,
J.-C.
,
1994
, “
Randomized Preprocessing of Configuration Space for Fast Path Planning
,”
1994 IEEE International Conference on Robotics and Automation, 1994
,
San Diego, CA
,
May 8–13
.
54.
Saha
,
M.
,
Latombe
,
J.-C.
,
Chang
,
Y.-C.
, and
Prinz
,
F.
,
2005
, “
Finding Narrow Passages With Probabilistic Roadmaps : The Small-Step
,”
Auton. Robots
,
19
(
3
), pp.
301
319
.
55.
Qureshi
,
A. H.
, and
Ayaz
,
Y.
,
2015
, “
Intelligent Bidirectional Rapidly Exploring Random Trees for Optimal Motion Planning in Complex Cluttered Environments
,”
Robot. Auton. Syst.
,
68
(
1
), pp.
1
11
.
56.
Kuffner
,
J. J.
, and
LaValle
,
S. M.
,
2000
, “
RRT-Connect: An Efficient Approach to Single-Query Path Planning
,”
Proceedings of the 2000 IEEE International Conference on Robotics and Automation
,
San Francisco, CA
,
April 24–28
.
57.
Bhattacharya
,
B. Y. P.
, and
Gavrilova
,
M. L.
,
2008
, “
Roadmap-Based Path Planning-Using the Voronoi Diagram for a Clearance-Based Shortest Path
,”
IEEE Robotics & Automation Magazine
,
15
(
2
), pp.
58
66
.
58.
Schwartz
,
J. T.
,
Sharir
,
M.
, and
Hopcroft
,
J. E.
,
1987
,
Planning, Geometry, and Complexity of Robot Motion
, Vol.
4
,
Ablex Publishing Corporation
,
Norwood, NJ
.
59.
Schwartz
,
J. T.
, and
Sharir
,
M.
,
1983
, “
On the ‘Piano Movers’ Problem I. The Case of a two-Dimensional Rigid Polygonal Body Moving Amidst Polygonal Barriers
,”
Commun. Pure Appl. Math.
,
36
(
3
), pp.
345
398
.
60.
Brooks
,
R. A.
, and
Lozano-Perez
,
T.
,
1985
, “
A Subdivision Algorithm in Configuration Space for Findpath with Rotation
,”
IEEE Trans. Syst. Man Cybern.
,
2
(
1
), pp.
224
233
.
61.
Faverjon
,
B.
,
1984
, “
Obstacle Avoidance Using an Octree in the Configuration Space of a Manipulator
,”
IEEE International Conference on Robotics and Automation
,
Atlanta, GA
,
March 13–15
.
62.
Asmara
,
A.
, and
Nienhuis
,
U.
,
2006
, “
Automatic Piping System in Ship
,”
The 5th International Conference on Computer and IT Applications in the Maritime Industries
,
Oegstgeest, the Netherlands
,
May 8–10
.
63.
Khatib
,
O.
,
1986
, “
Real-Time Obstacle Avoidance for Manipulators and Mobile Robots
,”
Autonomous Robot Vehicles
,
5
(
1
), pp.
396
404
.
64.
Elbanhawi
,
M.
, and
Simic
,
M.
,
2014
, “
Sampling-Based Robot Motion Planning : A Review
,”
IEEE Access
,
2
(
1
), pp.
56
77
.
65.
Warren
,
C. W.
,
1989
, “
Global Path Planning Using Artificial Potential Fields
,”
Proceedings of the International Conference on Robotics and Automation
,
Scottsdale, AZ
,
May 14–19
.
66.
Ge
,
S. S.
, and
Cui
,
Y. J.
,
2000
, “
New Potential Functions for Mobile Robot Path Planning
,”
IEEE Trans. Robot. Autom.
,
16
(
5
), pp.
615
620
.
67.
Luh
,
G.
, and
Liu
,
W.
,
2008
, “
An Immunological Approach to Mobile Robot Reactive Navigation
,”
Appl. Soft Comput.
,
8
(
1
), pp.
30
45
.
68.
Li
,
G.
,
Yamashita
,
A.
,
Asama
,
H.
, and
Tamura
,
Y.
,
2012
, “
An Efficient Improved Artificial Potential Field Based Regression Search Method for Robot Path Planning
,”
IEEE International Conference on Mechatronics and Automation
,
Chengdu, China
,
Aug. 5–8
.
69.
Vadakkepat
,
P.
,
Lee
,
T. H.
, and
Xin
,
L.
,
2001
, “
Application of Evolutionary Artificial Potential Field in Robot Soccer System
,”
Proceedings Joint 9th IFSA World Congress and 20th NAFIPS International Conference (Cat. No. 01TH8569)
,
Vancouver, BC, Canada
,
July 25–28
.
70.
Sandurkar
,
S.
, and
Chen
,
W.
,
1999
, “
GAPRUS—Genetic Algorithms Based Pipe Routing Using Tessellated Objects
,”
Comput. Ind.
,
38
(
3
), pp.
209
223
.
71.
Zachariadis
,
E. E.
,
Tarantilis
,
C. D.
, and
Kiranoudis
,
C. T.
,
2009
, “
A Guided Tabu Search for the Vehicle Routing Problem With two-Dimensional Loading Constraints
,”
Eur. J. Oper. Res.
,
195
(
3
), pp.
729
743
.
72.
Gao
,
R.
, and
Setup
,
A. C.
,
2016
, “
Complex Housing: Modelling and Optimization Using an Improved Multi-Objective Simulated Annealing Algorithm
,”
ASME 2016 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
,
Charlotte, NC
,
Aug. 21–24
.
73.
Ahn
,
C. W.
, and
Ramakrishna
,
R.
,
2002
, “
A Genetic Algorithm for Shortest Path Routing Problem and the Sizing of Populations
,”
IEEE Trans. Evol. Comput.
,
6
(
6
), pp.
566
579
.
74.
Liu
,
Q.
, and
Wang
,
C.
,
2011
, “
A Discrete Particle Swarm Optimization Algorithm for Rectilinear Branch Pipe Routing
,”
Assem. Autom.
,
31
(
4
), pp.
363
368
.
75.
Thantulage
,
G.
,
Kalganova
,
T.
, and
Wilson
,
M.
,
2006
, “
Grid Based and Random Based Ant Colony Algorithms for Automatic Hose Routing in 3D Space
,”
Trans. Eng. Comput. Technol.
,
14
(
1
), pp.
144
150
.
76.
Fadel
,
G. M.
, and
Kirschman
,
C.
,
1996
, “
Accuracy Issues in CAD to RP Translations
,”
Rapid Prototyp. J.
,
2
(
2
), pp.
4
17
.
77.
Masoudi
,
N.
, and
Fadel
,
G.
,
2018
, “
A Geometric Path-Planning Algorithm In Cluttered Planar Environments Using Convex Hulls
,”
Proceedings of the ASME 2018 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference IDETC2018
,
Quebec City, QC
,
Aug. 26–29
.
78.
Dijkstra
,
E. W.
,
1959
, “
A Note on two Problems in Connexion with Graphs
,”
Numerische Mathematik
,
1
(
1
), pp.
269
271
.
79.
Hart
,
P. E.
,
Nilsson
,
N. J.
, and
Raphael
,
B.
,
1968
, “
A Formal Basis for the Heuristic Determination of Minimum Cost Paths
,”
IEEE Trans. Syst. Sci. Cybern.
,
4
(
2
), pp.
100
107
.
80.
Stentz
,
A.
,
1994
, “
Optimal and Efficient Path Planning for Partially-Known Environments
,”
Proceedings IEEE International Conference on Robotics and Automation
,
Boston, MA
,
May 8–13
.
81.
Koeing
,
S.
, and
Likhachev
,
M.
,
2002
, “
D* Lite
,”
Aaai/iaai 15
,
Edmonton, Alberta, Canada
.
82.
Chandra
,
J.
,
Ramakrushna
,
D.
, and
Kumar
,
S.
,
2011
, “
Path Planning Strategy for Autonomous Mobile Robot Navigation Using Petri-GA Optimisation q
,”
Comput. Electr. Eng.
,
37
(
6
), pp.
1058
1070
.
83.
Liu
,
J.
,
Yang
,
J.
,
Liu
,
H.
,
Tian
,
X.
, and
Gao
,
M.
,
2017
, “
An Improved Ant Colony Algorithm for Robot Path Planning
,”
Soft Comput.
,
21
(
19
), pp.
5829
5839
.
84.
Kavraki
,
L. E.
,
Kolountzakis
,
M. W.
, and
Latombe
,
J.
,
1996
, “
Analysis of Probabilistic Roadmaps for Path Planning
,”
Proceedings of the 1996 IEEE International Conference on Robotics and Automation
,
Minneapolis, MN
,
Apr. 22–28
.
85.
Yang
,
K.
, and
Sukkarieh
,
S.
,
2008
, “
3D Smooth Path Planning for a UAV in Cluttered Natural Environments
,”
2008 IEEE/RSJ International Conference on Intelligent Robots and System (IROS)
,
Nice, France
,
Sept. 22–26
.
86.
Lu
,
J.
,
Diaz-Mercado
,
Y.
,
Egerstedt
,
M.
,
Zhou
,
H.
, and
Chow
,
S. N.
,
2014
, “
Shortest Paths Through 3-Dimensional Cluttered Environments
,”
Proceedings of IEEE International Conference on Robotics and Automation
,
Hong Kong, China
,
May 31–June 5
.
87.
Chow
,
S. N.
,
Yang
,
T. S.
, and
Zhou
,
H. M.
,
2013
, “
Global Optimizations by Intermittent Diffusion
,”
Chaos, CNN, Memristors and Beyond A Festschrift for Leon Chua With DVD-ROM, composed by Eleonora Bilotta
, pp.
466
479
.
88.
Fredman
,
M. L.
, and
Tarjan
,
R. E.
,
1987
, “
Fibonacci Heaps and Their Uses in Improved Network Optimization Algorithms
,”
Journal of the ACM (JACM)
,
34
(
3
), pp.
596
615
.
You do not currently have access to this content.