Sensors are crucial to modern mechanical systems. The location of these sensors can often make them vulnerable to outside interferences and failures, and the use of sensors over a lifetime can cause degradation and lead to failure. If a system has access to redundant sensor output, it can be trained to autonomously recognize errors in faulty sensors and learn to correct them. In this work, we develop a novel data-driven approach to detect sensor failures and predict the corrected sensor data using machine learning methods in an offline/online paradigm. Autocorrelation is shown to provide a global feature of failure data capable of accurately classifying the state of a sensor to determine if a failure is occurring. Feature selection of the redundant sensor data in combination with k-nearest neighbors regression is used to predict the corrected sensor data rapidly, while the system is operational. We demonstrate our methodology on flight data from a four-engine commercial jet that contains failures in the pitot static system resulting in inaccurate airspeed measurements.

References

References
1.
Zhao
,
C.
, and
Fu
,
Y.
,
2015
, “
Statistical Analysis Based Online Sensor Failure Detection for Continuous Glucose Monitoring in Type I Diabetes
,”
Chemom. Intell. Lab. Syst.
,
144
, pp.
128
137
.
2.
ElHady
,
N.
, and
Provost
,
J.
,
2018
, “
A Systematic Survey on Sensor Failure Detection and Fault-Tolerance in Ambient Assisted Living
,”
Sensors
,
18
(
7
), p.
1991
.
3.
Jiang
,
L.
,
2011
, “
Sensor Fault Detection and Isolation Using System Dynamics Identification Techniques
,” Doctoral Thesis,
The University of Michigan
.
4.
Isermann
,
R.
,
1984
, “
Process Fault Detection Based on Modeling and Estimation Methods a Survey
,”
Automatica
,
20
(
4
), pp.
387
404
.
5.
Frank
,
P. M.
,
1990
, “
Fault Diagnosis in Dynamic Systems Using Analytical and Knowledge-Based Redundancy: A Survey and Some New Results
,”
Automatica
,
26
(
3
), pp.
459
474
.
6.
Willsky
,
A. S.
,
1976
, “
A Survey of Design Methods for Failure Detection in Dynamic Systems
,”
Automatica
,
12
(
6
), pp.
601
611
.
7.
Zolghadri
,
A.
,
2010
, “
Advanced Model-Based FDIR Techniques for Aerospace Systems: Today Challenges and Opportunities
,”
Prog. Aerosp. Sci.
,
3
(
53
), pp.
18
29
.
8.
Napolitano
,
M. R.
,
Neppach
,
C.
,
Casdorph
,
V.
,
Naylor
,
S.
,
Innocenti
,
M.
, and
Silvestri
,
G.
,
1995
, “
Neural-Network-Based Scheme for Sensor Failure Detection, Identification, and Accommodation
,”
J. Guid. Control Dyn.
,
18
(
6
), pp.
1280
1286
.
9.
Liu
,
L.
,
Liu
,
D.
,
Zhang
,
Y.
, and
Peng
,
Y.
,
2016
, “
Effective Sensor Selection and Data Anomaly Detection for Condition Monitoring of Aircraft Engines
,”
Sensors
,
16
(
5
), p.
623
.
10.
Yang
,
C.
,
Liu
,
J.
,
Zeng
,
Y.
, and
Xie
,
G.
,
2019
, “
Real-Time Condition Monitoring and Fault Detection of Components Based on Machine-Learning Reconstruction Model
,”
Renew. Ener.
,
133
(
1
), pp.
433
441
.
11.
Pandya
,
D.
,
Suursalu
,
S.
,
Lam
,
B.
, and
Kwaspen
,
P.
,
2018
, “
Digital Twins for Predicting Early Onset of Failures Flow Valves
,”
AIChE Spring Meeting and Global Congress on Process Safety
,
Orlando, FL
,
Apr. 23
.
12.
Jiang
,
P.
,
Craig
,
P.
,
Crosky
,
A.
,
Maghrebi
,
M.
,
Canbulat
,
I.
, and
Saydam
,
S.
,
2018
, “
Risk Assessment of Failure of Rock Bolts in Underground Coal Mines Using Support Vector Machines
,”
Appl. Stoch. Models Bus. Ind.
,
34
(
3
), pp.
293
304
.
13.
Munir
,
S.
, and
Stankovic
,
J. A.
,
2014
, “
FailureSense: Detecting Sensor Failure Using Electrical Appliances in the Home
,”
2014 IEEE 11th International Conference on Mobile Ad Hoc and Sensor Systems
,
Philadelphia, PA
,
Oct. 28–30
, pp.
73
81
.
14.
Kapitanova
,
K.
,
Hoque
,
E.
,
Stankovic
,
J. A.
,
Whitehouse
,
K.
, and
Son
,
S. H.
,
2012
, “
Being Smart About Failures: Assessing Repairs in Smart Homes
,”
Proceedings of the 2012 ACM Conference on Ubiquitous Computing
,
Pittsburgh, PA
,
Sept. 5–8
, pp.
51
60
.
15.
Ganeriwal
,
S.
,
Balzano
,
L. K.
, and
Srivastava
,
M. B.
,
2008
, “
Reputation-Based Framework for High Integrity Sensor Networks
,”
ACM Trans. Sensor Netw. (TOSN)
,
4
(
3
), p.
15
.
16.
Zhang
,
Q.
, and
Zhang
,
Y.
,
1996
, “
A Method for Fault Detection and Isolation Using Neural Networks
,”
IEEE International Conference on Neural Networks
,
Washington, DC
,
June 3–6
, Vol.
4
, pp.
2270
2275
.
17.
Lin
,
J.
,
Williamson
,
S.
,
Borne
,
K.
, and
DeBarr
,
D.
,
2012
,
Advances in Machine Learning Data Mining in Astronomy
, Vol.
1
,
CRC Press
,
Boca Raton, FL
, pp.
617
645
.
18.
Rafiee
,
J.
, and
Tse
,
P.
,
2009
, “
Use of Autocorrelation of Wavelet Coefficients for Fault Diagnosis
,”
Mech. Syst. Signal Process.
,
23
(
5
), pp.
1554
1572
.
19.
Rhudy
,
M. B.
,
Fravolini
,
M. L.
,
Gu
,
Y.
,
Napolitano
,
M. R.
,
Gururajan
,
S.
, and
Chao
,
H.
,
2015
, “
Aircraft Model-Independent Airspeed Estimation Without Pitot Tube Measurements
,”
IEEE Trans. Aerosp. Electron. Syst.
,
51
(
3
), pp.
1980
1995
.
20.
Rhudy
,
M. B.
,
Fravolini
,
M. L.
,
Porcacchia
,
M.
, and
Napolitano
,
M. R.
,
2019
, “
Comparison of Wind Speed Models Within a Pitot-Free Airspeed Estimation Algorithm Using Light Aviation Data
,”
Aerosp. Sci. Technol.
,
86
, pp.
21
29
.
21.
Wan
,
E. A.
, and
Van Der Merwe
,
R.
,
2000
, “
The Unscented Kalman Filter for Nonlinear Estimation
,”
Proceedings of the IEEE 2000 Adaptive Systems for Signal Processing, Communications, and Control Symposium
,
Lake Louise, Alberta, Canada
,
Oct. 1–4
, pp.
153
158
.
22.
Hoshiya
,
M.
, and
Saito
,
E.
,
1984
, “
Structural Identification by Extended Kalman Filter
,”
J. Eng. Mech.
,
110
(
12
), pp.
1757
1770
.
23.
Schechter
,
E.
,
2014
, “Detecting Pitot Tube Obstructions,”
Aerospace America
, Vol.
52
,
B.
Iannotta
, ed.,
American Institute of Aeronautics and Astronautics
,
May
, ch. Engineering Notebook, pp.
16
18
.
24.
Carbaugh
,
D.
,
2003
, “
Flight Instrument Information-Situations and Guidance
,”
Aero Mag.
,
16
, pp.
485
490
.
25.
Klockowski
,
R.
,
Imai
,
S.
,
Rice
,
C. L.
, and
Varela
,
C. A.
,
2013
, “
Autonomous Data Error Detection and Recovery in Streaming Applications
,”
Procedia Comput. Sci.
,
18
, pp.
2036
2045
.
26.
Tang
,
G.
,
Zhang
,
Y.
, and
Wang
,
H.
,
2018
, “
Multivariable Ls-Svm With Moving Window Over Time Slices for the Prediction of Bearing Performance Degradation
,”
J. Intell. Fuzzy Syst.
,
34
(
6
), pp.
1
11
.
27.
Smith
,
M. K.
,
Castello
,
C. C.
, and
New
,
J. R.
,
2013
, “
Machine Learning Techniques Applied to Sensor Data Correction in Building Technologies
,”
12th International Conference on Machine Learning and Applications (ICMLA)
,
Miami, FL
,
Dec. 4–7
, pp.
305
308
.
28.
Ha
,
J.-H.
,
Kim
,
Y.-H.
,
Im
,
H.-H.
,
Kim
,
N.-Y.
,
Sim
,
S.
, and
Yoon
,
Y.
,
2018
, “
Error Correction of Meteorological Data Obtained With Mini-AWSs Based on Machine Learning
,”
Adv. Meteorol.
,
2018
, pp.
1
8
. Article ID 7210137.
29.
Napolitano
,
M. R.
,
An
,
Y.
, and
Seanor
,
B. A.
,
2000
, “
A Fault Tolerant Flight Control System for Sensor and Actuator Failures Using Neural Networks
,”
Aircraft Design
,
3
(
2
), pp.
103
128
.
30.
Bentley
,
J. L.
,
1975
, “
Multidimensional Binary Search Trees Used for Associative Searching
,”
Commun. ACM
,
18
(
9
), pp.
509
517
.
31.
Omohundro
,
S. M.
,
1989
, “
Five Balltree Construction Algorithms
,”
International Computer Science Institute
. ICSI Technical Report TR-89-063.
32.
Allaire
,
D.
,
Chambers
,
J.
,
Cowlagi
,
R.
,
Kordonowy
,
D.
,
Lecerf
,
M.
,
Mainini
,
L.
,
Ulker
,
F.
, and
Willcox
,
K.
,
2013
, “
An Offline/Online Dddas Capability for Self-Aware Aerospace Vehicles
,”
Procedia Comput. Sci.
,
18
(
1
), pp.
1959
1968
.
33.
Burrows
,
B. J.
, and
Allaire
,
D.
,
2017
, “
A Comparison of Naive Bayes Classifiers With Applications to Self-Aware Aerospace Vehicles
,”
18th AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference
,
Denver, CO
,
June 5–9
, p.
3819
.
34.
Burrows
,
B.
,
Isaac
,
B.
, and
Allaire
,
D. L.
,
2016
, “
A Dynamic Data-Driven Approach to Multiple Task Capability Estimation for Self-Aware Aerospace Vehicles
,”
17th AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference
,
Washington, DC
,
June 13–17
, p.
4125
.
35.
Burrows
,
B. J.
,
Isaac
,
B.
, and
Allaire
,
D.
,
2017
, “
Multitask Aircraft Capability Estimation Using Conjunctive Filters
,”
J. Aerosp. Inf. Syst.
,
14
(
12
), pp.
625
636
.
36.
Box
,
G. E.
,
Jenkins
,
G. M.
,
Reinsel
,
G. C.
, and
Ljung
,
G. M.
,
2015
,
Time Series Analysis: Forecasting and Control
,
John Wiley & Sons
New York
.
37.
Hyndman
,
R. J.
, and
Athanasopoulos
,
G.
,
2014
,
Forecasting: Principles and Practice
,
OTexts
,
Melbourne, Australia
.
38.
Guyon
,
I.
, and
Elisseeff
,
A.
,
2003
, “
An Introduction to Variable and Feature Selection
,”
J. Mach. Learn. Res.
,
3
, pp.
1157
1182
.
39.
Tibshirani
,
R.
,
1996
, “
Regression Shrinkage and Selection via the Lasso
,”
J. R. Stat. Soc. Ser. B (Methodological)
,
58
(
1
), pp.
267
288
.
40.
Kirkpatrick
,
S.
,
Gelatt
,
C. D.
, and
Vecchi
,
M. P.
,
1983
, “
Optimization by Simulated Annealing
,”
Science
,
220
(
4598
), pp.
671
680
.
41.
Jannach
,
D.
,
Zanker
,
M.
, and
Friedrich
,
A. F. G.
,
2010
,
Recommender Systems: An Introduction
,
Cambridge University Press
,
Cambridge, England
.
42.
Sobol
,
I. M.
,
2003
, “
Theorems and Examples on High Dimensional Model Representation
,”
Reliab. Eng. Syst. Saf.
,
79
(
2
), pp.
187
193
.
43.
Sobol
,
I. M.
,
1993
, “
Sensitivity Estimates for Nonlinear Mathematical Models
,”
Math. Model. Comput. Exp.
,
1
(
4
), pp.
407
414
.
44.
BEA Bureau d'Enquêtes et d'Analyses pour la sécurité de l'aviation civile
,
2012
,
Final report On the accident on 1st June 2009 to the Airbus A330-203 registered F-GZCP operated by Air France flight AF 447 Rio de Janeiro – Paris.
45.
Australian Transport Safety Bureau
,
2018
,
Airspeed indication failure on take-off involving Airbus A330
, 9M-MTK, Brisbane Airport, Queensland,
18
July
2018
. Investigation No.:AO-2018-053.
46.
Australian Transport Safety Bureau
,
2006
, Rejected takeoff – Brisbane Airport, Qld – 19 March 2006 – VN-QPB, Airbus A330-303. Investigation No. 200601453.
47.
NASA
,
2012
, “
Sample Flight Data
,”
48.
Administration, F. A.
,
2016
,
Pilot's Handbook of Aeronautical Knowledge
,
United States Department of Transportation
,
Washington, DC
, Chaps. 5 and 8.
49.
Linke-Diesinger
,
A.
,
2008
,
Systems of Commercial Turbofan Engines: An Introduction to Systems Functions
,
Springer Science & Business Media
,
New York
.
You do not currently have access to this content.