In the design step, the realistic modeling of the product represents an industrial requirement and a digital muck up (DMU) improvement. Thus, the tolerance integration in the computer aided design (CAD) model with the neglect of important physical factors, such as the components’ deformations during the mounting and assembly operation, causes a deviation between the numerical and the realistic models. In this regard, this paper presents a new model for the tolerance analysis of CAD assemblies based on the consideration of both manufacturing defects and deformations. The dimensional and geometrical tolerances are considered by the determination of assemblies’ configurations with defects based on the worst case tolerancing. The finite elements (FEs) simulation is realized with realistic models. An algorithm for updating the realistic mating constraints, between rigid and nonrigid parts, is developed. The case study of an assembly with planar and cylindrical joints is presented.

References

References
1.
Tlija
,
M.
,
Louhichi
,
B.
, and
Benamara
,
A.
,
2013
, “
A New Method for Tolerance Integration in CAD Model
,”
Proceedings of International Conference on Control, Engineering & Information Technology (CEIT’13)
,
Sousse, Tunisia
,
June 4–7
, pp.
46
51
.
2.
Korbi
,
A.
,
Tlija
,
M.
,
Louhichi
,
B.
, and
Benamara
,
A.
,
2018
, “
A CAD Model for Tolerance Analysis of Non-Rigid Planar Parts Assemblies
,”
Procedia CIRP
,
70
, pp.
126
131
.
3.
Korbi
,
A.
,
Tlija
,
M.
,
Louhichi
,
B.
, and
BenAmara
,
A.
,
2018
, “
CAD/Tolerancing Integration: A New Approach for Tolerance Analysis of Non-Rigid Parts Assemblies
,”
Int. J. Adv. Manuf. Technol.
,
98
(
5–8
), pp.
2003
2013
.
4.
Pino
,
L.
,
Bennis
,
F.
, and
Fortin
,
C.
,
1999
, “
The Use of a Kinematic Model to Analyze Positional Tolerances in Assemblies
,”
Proceedings of the 1999 IEEE International Conference on Robotics & Automation
,
Detroit, MI
,
May 10–15
, pp.
1418
1423
.
5.
Sobh
,
T.
,
Henderson
,
T.
, and
Zana
,
F.
,
1999
, “
Tolerance Representation and Analysis in Industrial Inspection
,”
J. Intell. Robot. Syst.
,
24
(
4
), pp.
387
401
.
6.
Clément
,
A.
,
Rivière
,
A.
,
Serré
,
P.
, and
Valade
,
C.
,
1998
, “
The TTRSs : 13 Constraints for Dimensioning and Tolerancing
,”
Geometric Design Tolerancing: Theories, Standards and Applications
,
Springer US
,
Boston, MA
, pp.
122
131
.
7.
Ameta
,
G.
,
Davidson
,
J. K.
, and
Shah
,
J. J.
,
2018
, “
Statistical Tolerance Analysis With T-Maps for Assemblies
,”
Procedia CIRP
,
75
, pp.
220
225
.
8.
Franciosa
,
E. P.
,
2009
, “
Modeling and Simulation of Variational Rigid and Compliant Assembly for Tolerance Analysis
,” Ph.D. thesis,
The University Naples Federico II
,
Naples
.
9.
Louhichi
,
B.
,
Tlija
,
M.
,
Benamara
,
A.
, and
Tahan
,
A.
,
2015
, “
An Algorithm for CAD Tolerancing Integration: Generation of Assembly Configurations According to Dimensional and Geometrical Tolerances
,”
Comput. Aided Des.
62
, pp.
259
274
.
10.
Shen
,
Z.
,
Ameta
,
G.
,
Shah
,
J. J.
, and
Davidson
,
J. K.
,
2005
, “
A Comparative Study of Tolerance Analysis Methods
,”
ASME J. Comput. Inf. Sci. Eng.
5
, pp.
247
256
.
11.
Prisco
,
U.
, and
Giorleo
,
G.
,
2002
, “
Overview of Current CAT Systems
,”
Integr. Comput. Aided Eng.
,
9
(
4
), pp.
373
387
.
12.
Schleich
,
B.
,
Anwer
,
N.
,
Zhu
,
Z.
,
Qiao
,
L.
,
Mathieu
,
L.
, and
Wartzack
,
S.
,
2014
, “
A Comparative Study on Tolerance Analysis Approaches
,”
1st International Symposium on Robust Design
,
Copenhagen, Denmark
,
Aug. 14–15
, pp.
29
39
.
13.
Anselmetti
,
B.
,
2006
, “
Generation of Functional Tolerancing Based on Positioning Features
,”
Comput. Aided Des.
,
38
(
8
), pp.
902
919
.
14.
Dantan
,
J. Y.
, and
Qureshi
,
A. J.
,
2009
, “
Worst-Case and Statistical Tolerance Analysis Based on Quantified Constraint Satisfaction Problems and Monte Carlo Simulation
,”
Comput. Aided Des.
,
41
(
1
), pp.
1
12
.
15.
Schleich
,
B.
,
Anwer
,
N.
,
Mathieu
,
L.
, and
Wartzack
,
S.
,
2014
, “
Skin Model Shapes: A New Paradigm Shift for Geometric Variations Modelling in Mechanical Engineering
,”
Comput. Aided Des.
50
, pp.
1
15
.
16.
Zhu
,
Z.
,
Qiao
,
L.
, and
Anwer
,
N.
,
2016
, “
An Improved Tolerance Analysis Method Based on Skin Model Shapes of Planar Parts
,”
Procedia CIRP
,
56
, pp.
237
242
.
17.
Tlija
,
M.
,
Louhichi
,
B.
, and
BenAmara
,
A.
,
2013
, “
Evaluating the Effect of Tolerances on the Functional Requirements of Assemblies
,”
Mech. Ind.
,
14
(
3
), pp.
191
206
.
18.
Jbira
,
I.
,
Tlija
,
M.
,
Louhichi
,
B.
, and
Tahan
,
A.
,
2017
, “
CAD/Tolerancing Integration: Mechanical Assembly With Form Defects
,”
Adv. Eng. Softw.
114
, pp.
312
324
.
19.
Liu
,
S. C.
,
Hu
,
S. J.
, and
Woo
,
T. C.
,
2008
, “
Tolerance Analysis for Sheet Metal Assemblies
,”
ASME J. Mech. Des.
,
118
(
1
), pp.
62
67
.
20.
Camelio
,
J.
,
Hu
,
S. J.
, and
Ceglarek
,
D.
,
2004
, “
Modeling Variation Propagation of Multi-Station Assembly Systems With Compliant Parts
,”
ASME J. Mech. Des.
,
125
(
4
), pp.
673
681
.
21.
Jack Hu
,
S.
, and
Camelio
,
J.
,
2006
, “
Modeling and Control of Compliant Assembly Systems
,”
CIRP Ann. Manuf. Technol.
,
55
(
1
), pp.
19
22
.
22.
Hermansson
,
T.
,
Carlson
,
J. S.
,
Björkenstam
,
S.
, and
Söderberg
,
R.
,
2013
, “
Geometric Variation Simulation and Robust Design for Flexible Cables and Hoses
,”
Proc. Inst. Mech. Eng. Part B J. Eng. Manuf.
,
227
(
5
), pp.
681
689
.
23.
Samper
,
S.
, and
Giordano
,
M.
,
2002
, “
Taking Into Account Elastic Displacements in 3D Tolerancing
,”
J. Mater. Process. Technol.
,
78
(
1–3
), pp.
156
162
.
24.
Mazur
,
M.
,
Leary
,
M.
, and
Subic
,
A.
,
2011
, “
Computer Aided Tolerancing (CAT) Platform for the Design of Assemblies Under External and Internal Forces
,”
Comput. Aided Des.
,
43
(
6
), pp.
707
719
.
25.
Mazur
,
M.
,
Leary
,
M.
, and
Subic
,
A.
,
2014
, “
Application of Polynomial Chaos Expansion to Tolerance Analysis and Synthesis in Compliant Assemblies Subject to Loading
,”
ASME J. Mech. Des.
,
137
(
3
), p.
031701
.
26.
Geetha
,
K.
,
Ravindran
,
D.
,
Siva Kumar
,
M.
, and
Islam
,
M. N.
,
2013
, “
Multi-Objective Optimization for Optimum Tolerance Synthesis With Process and Machine Selection Using a Genetic Algorithm
,”
Int. J. Adv. Manuf. Technol.
,
67
(
9–12
), pp.
2439
2457
.
27.
Stuppy
,
J.
, and
Meerkamm
,
H.
,
2009
, “
Tolerance Analysis of a Crank Mechanism by Taking Into Account Different Kinds of Deviation
,”
Proceedings of the 11th CIRP International Conference on Computer Aided Tolerancing
,
Annecy, France
,
Mar. 26–27
.
28.
Jeang
,
A.
,
Chen
,
T. K.
, and
Hwan
,
C. L.
,
2002
, “
A Statistical Dimension and Tolerance Design for Mechanical Assembly Under Thermal Impact
,”
Int. J. Adv. Manuf. Technol.
,
20
(
12
), pp.
907
915
.
29.
Pierre
,
L.
,
Teissandier
,
D.
, and
Nadeau
,
J. P.
,
2009
, “
Integration of Thermomechanical Strains Into Tolerancing Analysis
,”
Int. J. Interact. Des. Manuf.
,
3
(
4
), pp.
247
263
.
30.
Benichou
,
S.
, and
Anselmetti
,
B.
,
2011
, “
Thermal Dilatation in Functional Tolerancing
,”
Mech. Mach. Theory
,
46
(
11
), pp.
1575
1587
.
31.
Manarvi
,
I. A.
, and
Juster
,
N. P.
,
2004
, “
Framework of an Integrated Tolerance Synthesis Model and Using FE Simulation as a Virtual Tool for Tolerance Allocation in Assembly Design
,”
J. Mater. Process. Technol.
,
150
(
1
), pp.
182
193
.
32.
Jayaprakash
,
G.
,
Thilak
,
M.
, and
Sivakumar
,
K.
,
2014
, “
Optimal Tolerance Design for Mechanical Assembly Considering Thermal Impact
,”
Int. J. Adv. Manuf. Technol.
,
73
(
5–8
), pp.
859
873
.
33.
Ting
,
L.
,
Yanlong
,
C.
,
Jing
,
W.
, and
Jiangxin
,
Y.
,
2016
, “
Assembly Error Calculation With Consideration of Part Deformation
,”
Procedia CIRP
,
43
, pp.
58
63
.
34.
Guo
,
J.
,
Li
,
B.
,
Liu
,
Z.
,
Hong
,
J.
, and
Wu
,
X.
,
2016
, “
Integration of Geometric Variation and Part Deformation Into Variation Propagation of 3-D Assemblies
,”
Int. J. Prod. Res.
,
54
(
19
), pp.
5708
5721
.
35.
Baltas
,
D.
,
Zamboglou
,
N.
,
Lahanas
,
M.
,
Milickovic
,
N.
,
Kemmerer
,
T.
, and
Karouzakis
,
K.
,
2002
, “
Optimized Bounding Boxes for Three-Dimensional Treatment Planning in Brachytherapy
,”
Med. Phys.
,
27
(
10
), pp.
2333
2342
.
36.
Sivasankar
,
S.
,
Jeyapaul
,
R.
,
Kolappan
,
S.
, and
Shaahid
,
N. M.
,
2012
, “
Procedural Study for Roughness, Roundness and Waviness Measurement of EDM Drilled Holes Using Image Processing Technology
,”
Comput. Model. New Technol.
,
16
(
1
), pp.
49
63
.
37.
Srinivasan
,
V.
,
2003
, “An Integrated View of Geometrical Product Specification and Verification,”
Geometric Product Specification and Verification: Integration of Functionality
,
P.
Bourdet
, and
L.
Mathieu
, eds.,
Kluwer Academic Publishers
,
Dordrecht
, pp.
1
11
.
38.
Jacquelin
,
J.
,
2011
, “
3-D Linear Regression
,” pp.
28
34
, https://fr.scribd.com/doc/31477970/, Accessed October 15, 2018.
39.
Bailey
,
D. G.
,
2004
, “An Efficient Euclidean Distance Transform,”
Combinatorial Image Analysis
,
R.
Klette
, and
J.
Žunić
, eds.,
Springer
,
Berlin
, pp.
394
408
.
40.
Kumar
,
J.
, and
Shunmugam
,
M. S.
,
2006
, “
Fitting of Reference Surfaces for Engineering Surfaces by Nonlinear Least-Squares Technique
,”
J. Comput. Inf. Sci. Eng.
,
6
(
4
), pp.
349
354
.
41.
Mani
,
N.
,
Shah
,
J. J.
, and
Davidson
,
J. K.
,
2011
, “
Standardization of CMM Fitting Algorithms and Development of Inspection Maps for Use in Statistical Process Control
,”
ASME 2011 International Manufacturing Science and Engineering Conference
,
Corvallis, OR
,
June 13–17
.
42.
Petrík
,
M.
,
Kováč
,
J.
,
Kaťuch
,
P.
,
Bednarčíková
,
L.
,
Hudák
,
R.
, and
Živčák
,
J.
,
2009
, “
Roundness: Determining the Reference Circle for MCCI and MICI System
,”
The 7th International Conference on Measurement, Smolenice
,
Slovakia
,
May 20–23
, pp.
352
355
.
43.
Thomas
,
P. D.
,
2003
, “
Evaluation of CMM Tolerance Calculation Software
,”
Proceedings of the American Society for Precision Engineering Coordinate Measuring Machines
,
Charlotte, NC
,
June 25–26
.
You do not currently have access to this content.