In this paper, we present “FabSearch,” a prototype search engine for sourcing manufacturing service providers, by making use of the product manufacturing information (PMI) contained within a 3D digital file of a part product. FabSearch is designed to take in a query 3D model, such as the .STEP file of a part model which then produces a ranked list of job shop service providers who are best suited to fabricate the part. Service providers may have potentially built hundreds to thousands of parts with associated part 3D models over time. FabSearch assumes that these service providers have shared shape signatures of the part models built previously to enable the algorithm to most effectively rank the service providers who have the most experience to build the query part model. FabSearch has two important features that helps it produce relevant results. First, it makes use of the shape characteristics of the 3D part by calculating the Spherical Harmonics signature of the part to calculate the most similar shapes built previously be job shop service providers. Second, FabSearch utilizes metadata about each part, such as material specification, tolerance requirements to help improve the search results based on the specific query model requirements. The algorithm is tested against a repository containing more than 2000 models distributed across various job shop service providers. For the first time, we show the potential for utilizing the rich information contained within a 3D part model to automate the sourcing and eventual selection of manufacturing service providers.

References

1.
MForesight Report,
2016
, “
Democratizing Manufacturing
,” http://mforesight.org/projects-events/democratizing-manufacturing/
2.
Shen
,
M. J.
, and
Chen
,
M. C.
,
2007
, “
The Relationship of Leadership, Team Trust and Team Performance: A Comparison of the Service and Manufacturing Industries
,”
Soc. Behav. Pers.
,
35
(
5
), pp.
643
658
.
3.
Manufacturing Institute
,
2014
, “
Small Companies Dominate the Industrial Landscape
,” http://www.themanufacturinginstitute.org/Research/Facts-About-Manufacturing/Economy-and-Jobs/Company-Size/Company-Size.aspx. Accessed March 6, 2019.
4.
Griffin
,
Marie
.
2012
, “
Thomasnet Relaunches With Enhanced Product Search
.” https://adage.com/article/btob/thomasnet-relaunches-enhanced-product-search/287016/. Accessed October 5, 2012.
5.
Noci
,
G.
,
1997
, “
Designing ‘Green’ Vendor Rating Systems for the Assessment of a Supplier’s Environmental Performance
,”
Eur. J. Purch. Supply Manage.
,
3
(
2
), pp.
103
114
.
6.
Lee
,
A. H.
,
Kang
,
H. Y.
,
Hsu
,
C. F.
, and
Hung
,
H. C.
,
2009
, “
A Green Supplier Selection Model for High-Tech Industry
,”
Expert Syst. Appl.
,
36
(
4
), pp.
7917
7927
.
7.
Kahraman
,
C.
,
Cebeci
,
U.
, and
Ulukan
,
Z.
,
2003
, “
Multi-Criteria Supplier Selection Using Fuzzy AHP
,”
Logist. Inf. Manage.
,
16
(
6
), pp.
382
394
.
8.
Kilincci
,
O.
, and
Onal
,
S. A.
,
2011
, “
Fuzzy AHP Approach for Supplier Selection in a Washing Machine Company
,”
Expert Syst. Appl.
,
38
(
8
), pp.
9656
9664
.
9.
Chamodrakas
,
I.
,
Batis
,
D.
, and
Martakos
,
D.
,
2010
, “
Supplier Selection in Electronic Marketplaces Using Satisficing and Fuzzy AHP
,”
Expert Syst. Appl.
,
37
(
1
), pp.
490
498
.
10.
Boran
,
F. E.
,
Genç
,
S.
,
Kurt
,
M.
, and
Akay
,
D.
,
2009
, “
A Multi-Criteria Intuitionistic Fuzzy Group Decision Making for Supplier Selection With TOPSIS Method
,”
Expert Syst. Appl.
,
36
(
8
), pp.
11363
11368
.
11.
Wang
,
J. W.
,
Cheng
,
C. H.
, and
Huang
,
K. C.
,
2009
, “
Fuzzy Hierarchical TOPSIS for Supplier Selection
,”
Appl. Soft Comput.
,
9
(
1
), pp.
377
386
.
12.
Liao
,
C. N.
, and
Kao
,
H. P.
,
2011
, “
An Integrated Fuzzy TOPSIS and MCGP Approach to Supplier Selection in Supply Chain Management
,”
Expert Syst. Appl.
,
38
(
9
), pp.
10803
10811
.
13.
Xu
,
J.
, and
Ding
,
C.
,
2011
, “
A Class of Chance Constrained Multi-Objective Linear Programming With Birandom Coefficients and Its Application to Vendors Selection
,”
Int. J. Prod. Econ.
,
131
(
2
), pp.
709
720
.
14.
Sadeghieh
,
A.
,
Dehghanbaghi
,
M.
,
Dabbaghi
,
A.
, and
Barak
,
S.
,
2012
, “
A Genetic Algorithm Based Grey Goal Programming (G3) Approach for Parts Supplier Evaluation and Selection
,”
Int. J. Prod. Res.
,
50
(
16
), pp.
4612
4630
.
15.
Liao
,
Z.
, and
Rittscher
,
J.
,
2007
, “
A Multi-Objective Supplier Selection Model Under Stochastic Demand Conditions
,”
Int. J. Prod. Econ.
,
105
(
1
), pp.
150
159
.
16.
Che
,
Z. H.
,
2010
, “
A Genetic Algorithm-Based Model for Solving Multi-Period Supplier Selection Problem With Assembly Sequence
,”
Int. J. Prod. Res.
,
48
(
15
), pp.
4355
4377
.
17.
Iyer
,
N.
,
Jayanti
,
S.
,
Lou
,
K.
,
Kalyanaraman
,
Y.
, and
Ramani
,
K.
,
2005
, “
Three-Dimensional Shape Searching: State-of-the-Art Review and Future Trends
,”
Comput. Aided Des.
,
37
(
5
), pp.
509
530
.
18.
Ramesh
,
M.
,
Yip-Hoi
,
D.
, and
Dutta
,
D.
,
2001
, “
Feature Based Shape Similarity Measurement for Retrieval of Mechanical Parts
,”
ASME J. Comput. Inf. Sci. Eng.
,
1
(
3
), pp.
245
256
.
19.
Khotanzad
,
A.
, and
Hong
,
Y. H.
,
1990
, “
Invariant Image Recognition by Zernike Moments
,”
IEEE Trans. Pattern Anal. Mach. Intell.
,
12
(
5
), pp.
489
497
.
20.
Funkhouser
,
T.
,
Min
,
P.
,
Kazhdan
,
M.
,
Chen
,
J.
,
Halderman
,
A.
,
Dobkin
,
D.
, and
Jacobs
,
D.
,
2003
, “
A Search Engine for 3D Models
,”
ACM Trans. Graph. (TOG)
,
22
(
1
), pp.
83
105
.
21.
Bronstein
,
M. M.
, and
Kokkinos
,
I.
,
2010
, “
Scale-Invariant Heat Kernel Signatures for Non-Rigid Shape Recognition
,”
2010 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)
,
San Francisco, CA
,
June 13–18
, pp.
1704
1711
.
22.
Cardone
,
A.
,
Gupta
,
S. K.
,
Deshmukh
,
A.
, and
Karnik
,
M.
,
2006
, “
Machining Feature-Based Similarity Assessment Algorithms for Prismatic Machined Parts
,”
Comput. Aided Des.
,
38
(
9
), pp.
954
972
.
23.
Zhang
,
Y.
,
Hu
,
W.
,
Rong
,
Y.
, and
Yen
,
D. W.
,
2001
, “
Graph-Based Set-Up Planning and Tolerance Decomposition for Computer-Aided Fixture Design
,”
Int. J. Prod. Res.
,
39
(
14
), pp.
3109
3126
.
24.
Deshmukh
,
A. S.
,
Banerjee
,
A. G.
,
Gupta
,
S. K.
, and
Sriram
,
R. D.
,
2008
, “
Content-Based Assembly Search: A Step Towards Assembly Reuse
,”
Comput. Aided Des.
,
40
(
2
), pp.
244
261
.
25.
Osada
,
R.
,
Funkhouser
,
T.
,
Chazelle
,
B.
, and
Dobkin
,
D.
,
2002
, “
Shape Distributions
,”
ACM Trans. Graph. (TOG)
,
21
(
4
), pp.
807
832
.
26.
Ip
,
C. Y.
,
Lapadat
,
D.
,
Sieger
,
L.
, and
Regli
,
W. C.
,
2002
, “
Using Shape Distributions to Compare Solid Models
,”
Proceedings of the Seventh ACM Symposium on Solid Modeling and Applications
,
Saarbrucken, Germany
,
June 17–21
, pp.
273
280
.
27.
Kazhdan
,
M.
,
Funkhouser
,
T.
, and
Rusinkiewicz
,
S.
,
2003
, “
Rotation Invariant Spherical Harmonic Representation of 3 d Shape Descriptors
,”
Symposium on Geometry Processing
,
Aachen, Germany
,
June 22–25
, Vol.
6
, pp.
156
164
.
28.
Horn
,
B. K. P.
,
1984
, “
Extended Gaussian Images
,”
Proc. IEEE
,
72
(
12
), pp.
1671
1686
.
29.
Maturana
,
D.
, and
Scherer
,
S.
,
2015
, “
Voxnet: A 3d Convolutional Neural Network for Real-Time Object Recognition
,”
2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)
,
Hamburg, Germany
,
Sept. 28–Oct. 3
, pp.
922
928
.
30.
Su
,
H.
,
Maji
,
S.
,
Kalogerakis
,
E.
, and
Learned-Miller
,
E.
,
2015
, “
Multi-View Convolutional Neural Networks for 3d Shape Recognition
,”
Proceedings of the IEEE International Conference on Computer Vision
,
Santiago, Chile
,
Dec. 7–13
, pp.
945
953
.
31.
Chang
,
A. X.
,
Funkhouser
,
T.
,
Guibas
,
L.
,
Hanrahan
,
P.
,
Huang
,
Q.
,
Li
,
Z.
, and
Xiao
,
J.
,
2015
,
Shapenet: An Information-Rich 3d Model Repository
, e-print arXiv:1512.03012.
32.
Jayanti
,
S.
,
Kalyanaraman
,
Y.
,
Iyer
,
N.
, and
Ramani
,
K.
,
2006
, “
Developing an Engineering Shape Benchmark for CAD Models
,”
Comput. Aided Des.
,
38
(
9
), pp.
939
953
.
33.
Shilane
,
P.
,
Min
,
P.
,
Kazhdan
,
M. M.
, and
Funkhouser
,
T. A.
,
2004
, “
The Princeton Shape Benchmark
,”
Shape Modeling International
,
Genova, Italy
, Vol.
4
, No.
04
.
34.
Zhou
,
Q.
, and
Jacobson
,
A.
,
2016
,
Thingi10K: A Dataset of 10,000 3D-Printing Models
, e-print arXiv:1605.04797.
35.
DimeLab
,
2019
, “
FabWave Repository
,” https://www.dimelab.org/fabwave, Accessed March 6, 2019.
36.
Dong
,
W.
,
Moses
,
C.
, and
Li
,
K.
,
2011
, “
Efficient k-Nearest Neighbor Graph Construction for Generic Similarity Measures
,”
Proceedings of the 20th International Conference on World Wide Web
,
Hyderabad, India
,
Mar. 28–Apr. 1
,
ACM
,
New York
, pp.
577
586
.
37.
Page
,
L.
,
Brin
,
S.
,
Motwani
,
R.
, and
Winograd
,
T.
,
1999
, “
The PageRank Citation Ranking: Bringing Order to the Web
,” Stanford InfoLab., Stanford University, Stanford, CA.
38.
Riegler
,
G.
,
Ulusoy
,
A. O.
, and
Geiger
,
A.
,
2017
, “
Octnet: Learning Deep 3d Representations at High Resolutions
,”
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
,
Honolulu, Hawaii
,
July 22–25
, Vol.
3
.
39.
Zhao
,
W. L.
,
Yang
,
J.
, and
Deng
,
C. H.
,
2017
,
Scalable Nearest Neighbor Search Based on kNN Graph
, e-print arXiv:1701.08475.
40.
Fu
,
C.
, and
Cai
,
D.
,
2016
,
Efanna: An Extremely Fast Approximate Nearest Neighbor Search Algorithm Based on kNN Graph
, e-print arXiv:1609.07228.
41.
Boutet
,
A.
,
Kermarrec
,
A. M.
,
Mittal
,
N.
, and
Taiani
,
F.
,
2016
, “
Being Prepared in a Sparse World: The Case of KNN Graph Construction
,”
2016 IEEE 32nd International Conference on Data Engineering (ICDE)
,
Helsinki, Finland
,
May 16–20
, pp.
241
252
.
42.
Hyvönen
,
V.
,
Pitkänen
,
T.
,
Tasoulis
,
S.
,
Jääsaari
,
E.
,
Tuomainen
,
R.
,
Wang
,
L.
, and
Roos
,
T.
,
2016
, “
Fast Nearest Neighbor Search Through Sparse Random Projections and Voting
,”
2016 IEEE International Conference on Big Data (Big Data)
,
Washington DC
,
Dec. 5–8
, pp.
881
888
.
43.
Weston
,
J.
,
Bengio
,
S.
, and
Usunier
,
N.
,
2010
, “
Large Scale Image Annotation: Learning to Rank With Joint Word-Image Embeddings
,”
Mach. Learn.
,
81
(
1
), pp.
21
35
.
44.
Xu
,
R.
,
Xiong
,
C.
,
Chen
,
W.
, and
Corso
,
J. J.
,
2015
, “
Jointly Modeling Deep Video and Compositional Text to Bridge Vision and Language in a Unified Framework
,”
Proceedings of the Twenty-Ninth AAAI Conference on Artificial Intelligence
,
Austin, TX
,
Jan. 25–30
, Vol.
5
, p.
6
.
45.
Ryan
,
P. Y.
,
2008
, “
Prêt à Voter With Paillier Encryption
,”
Math. Comput. Model.
,
48
(
9–10
), pp.
1646
1662
.
You do not currently have access to this content.