Surface blending is widely applied in mechanical engineering. Creating a smooth transition surface of C2 continuity between time-dependent parametric surfaces that change their positions and shapes with time is an important and unsolved topic in surface blending. In order to address this issue, this paper develops a new approach to unify both time-dependent and time-independent surface blending with C2 continuity. It proposes a new surface blending mathematical model consisting of a vector-valued sixth-order partial differential equation and blending boundary constraints and investigates a simple and efficient approximate analytical solution of the mathematical model. A number of examples are presented to demonstrate the effectiveness and applications. The proposed approach has the advantages of (1) unifying time-independent and time-dependent surface blending, (2) always maintaining C2 continuity at trimlines when parametric surfaces change their positions and shapes with time, (3) providing effective shape control handles to achieve the expected shapes of blending surfaces but still exactly satisfy the given blending boundary constraints, and (4) quickly generating C2 continuous blending surfaces from the approximate analytical solution with easiness, good accuracy, and high efficiency.

References

References
1.
Rossignac
,
J. R.
, and
Requicha
,
A. A. G.
,
1984
, “
Constant-Radius Blending in Solid Modeling
,” ,
3
, pp.
65
73
.
2.
Vida
,
J.
,
Martin
,
R. R.
, and
Varady
,
T.
,
1994
, “
A Survey of Blending Methods That Use Parametric Surfaces
,”
Comput. Aided Des.
,
26
(
5
), pp.
341
365
.
3.
Rockwood
,
A. P.
,
1989
, “
The Displacement Method for Implicit Blending Surfaces in Solid Models
,”
ACM Trans. Graph.
,
8
(
4
), pp.
279
297
.
4.
Filip
,
D. J.
,
1989
, “
Blending Parametric Surfaces
,”
ACM Trans. Graph.
,
8
(
3
), pp.
164
173
.
5.
Aumann
,
G.
,
1995
, “
Curvature Continuous Connections of Cones and Cylinders
,”
Comput. Aided Des.
,
27
(
4
), pp.
293
301
.
6.
Maekawa
,
T.
,
Nishimura
,
Y.
, and
Sasaki
,
T.
,
2005
, “
Circular Highlight/Reflection Lines
,”
Comput. Aided Des. Appl.
,
2
(
1–4
), pp.
291
300
.
7.
Pegna
,
J.
, and
Wolter
,
F.-E.
,
1992
, “
Geometrical Criteria to Guarantee Curvature Continuity of Blend Surfaces
,”
ASME J. Mech. Des.
,
114
, pp.
201
210
.
8.
Shen
,
X.
,
Avital
,
E.
,
Rezaienia
,
M. A.
,
Paul
,
G.
, and
Korakianitis
,
T.
,
2017
, “
Computational Methods for Investigation of Surface Curvature Effects on Airfoil Layer Behavior
,”
J. Algorithms Comput. Technol.
,
11
(
1
), pp.
68
82
.
9.
Zhang
,
Z.
,
Li
,
G.
,
Lu
,
H.
,
Ouyang
,
Y.
,
Yin
,
M.
, and
Xian
,
C.
,
2015
, “
Fast as-Isometric-as-Possible Shape Interpolation
,”
Comput. Graph.
,
46
, pp.
244
256
.
10.
Baek
,
S.-Y.
,
Lim
,
J.
, and
Lee
,
K.
,
2015
, “
Isometric Shape Interpolation
,”
Comput. Graph.
,
46
, pp.
257
263
.
11.
You
,
L. H.
,
Ugail
,
H.
, and
Zhang
,
J. J.
,
2012
, “
Controllable C1 Continuous Blending of Time-Dependent Parametric Surfaces
,”
Vis. Comput.
,
28
, pp.
573
583
.
12.
Kiciak
,
P.
,
2011
, “
Bicubic B-Spline Blending Patches With Optimized Shape
,”
Comput. Aided Des.
,
43
, pp.
133
144
.
13.
Dahl
,
H. E. I.
, and
Krasauskas
,
R.
,
2012
, “
Rational Fixed Radius Rolling Ball Blends Between Natural Quadrics
,”
Comput. Aided Geom. Des.
,
29
, pp.
691
706
.
14.
Lukács
,
G.
,
1998
, “
Differential Geometry of G1 Variable Radius Rolling Ball Blend Surfaces
,”
Comput. Aided Geom. Des.
,
15
, pp.
585
613
.
15.
Hatna
,
A.
,
Grieve
,
R. J.
, and
Broomhead
,
P.
,
2001
, “
Surface Blending for Machining Purposes: A Brief Survey and Application for Machining Compound Surfaces
,”
P. I. Mech. Eng. B.-J. Eng.
,
215
(
10
), pp.
1397
1408
.
16.
Hoffmann
,
C.
, and
Hopcroft
,
J.
,
1986
, “
Quadric Blending Surfaces
,”
Comput. Aided Des.
,
18
(
6
), pp.
301
306
.
17.
Kosters
,
M.
,
1989
, “
Quadratic Blending Surfaces for Complex Corners
,”
Vis. Comput.
,
5
(
3
), pp.
134
146
.
18.
Ohkura
,
K.
, and
Kakazu
,
Y.
,
1992
, “
Generalization of the Potential Method for Blending Three Surfaces
,”
Comput. Aided Des.
,
24
(
11
), pp.
599
609
.
19.
Shi
,
K.-L.
,
Yong
,
J.-H.
, and
Sun
,
J.-G.
,
2010
, “
Filling n-Sided Regions With Triangular Coons B-Spline Patches
,”
Vis. Comput.
,
26
, pp.
791
780
.
20.
Liu
,
X.
,
2015
, “
Filling N-Sided Holes With Trimmed B-Spline Surfaces Based on Energy-Minimization Method
,”
ASME J. Comput. Inf. Sci. Eng.
,
15
(
1
), p.
011001
.
21.
Zhou
,
P.
,
2010
, “
Polyhedral Vertex Blending With Setbacks Using Rational S-Patches
,”
Comput. Aided Geom. Des.
,
27
, pp.
233
244
.
22.
Krasauskas
,
R.
,
2008
, “
Branching Blend of Natural Quadrics Based on Surfaces With Rational Offsets
,”
Comput. Aided Geom. Des.
,
25
, pp.
332
341
.
23.
Bloor
,
M. I. G.
, and
Wilson
,
M. J.
,
1989
, “
Generating Blend Surfaces using Partial Differential Equations
,”
Comput. Aided Des.
,
21
(
3
), pp.
165
171
.
24.
Bloor
,
M. I. G.
,
Wilson
,
M. J.
, and
Hagen
,
H.
,
1995
, “
The Smoothing Properties of Variational Schemes for Surface Design
,”
Comput. Aided Geom. Des.
,
12
(
4
), pp.
381
394
.
25.
Brown
,
J. M.
,
Wilson
,
M. J.
,
Bloor
,
M. S.
, and
Wilson
,
M. J.
,
1998
, “
The Accuracy of B-Spline Finite Element Approximations to PDE Surfaces
,”
Comput. Methods Appl. Mech. Eng.
,
158
(
3-4
), pp.
221
234
.
26.
Jacobson
,
A.
,
Tosun
,
E.
,
Sorkine
,
O.
, and
Zorin
,
D.
,
2010
, “
Mixed Finite Elements for Variational Surface Modeling
,”
Comput. Graph. Forum
,
29
(
5
), pp.
1565
1675
.
27.
Pan
,
Q.
,
Xu
,
G.
, and
Zhang
,
Y.
,
2014
, “
A Unified Method for Hybrid Subdivision Surface Design Using Geometric Partial Differential Equations
,”
Comput. Aided Des.
,
45
, pp.
110
119
.
28.
Park
,
J.
,
Kim
,
T.
,
Baek
,
S.-Y.
, and
Lee
,
K.
,
2015
, “
An Algorithm for Estimating Surface Normal from its Boundary Curves
,”
J. Comput. Des. Eng.
,
2
, pp.
67
72
.
29.
Stanko
,
T.
,
Hahmann
,
S.
,
Bonneau
,
G.-P.
, and
Saguin-Sprynski
,
N.
,
2016
, “
Surfacing Curve Networks With Normal Control
,”
Comput. Graph.
,
60
, pp.
1
8
.
30.
Zhang
,
J. J.
, and
You
,
L. H.
,
2002
, “
PDE Based Surface Representation - Vase Design
,”
Comput. Gr.
,
26
, pp.
89
92
.
31.
Bloor
,
M. I. G.
, and
Wilson
,
M. J.
,
1996
, “
Spectral Approximations to PDE Surfaces
,”
Comput. Aided Des.
,
28
(
2
), pp.
145
152
.
32.
Gonzalez
,
G.
,
Ugail
,
H.
,
Willis
,
P.
, and
Palmer
,
I. J.
,
2008
, “
A Survey of Partial Differential Equations in Geometric Design
,”
Vis. Comput.
,
24
(
3
), pp.
213
225
.
33.
Mora
,
H.
,
Mora-Pascual
,
J. M.
,
Garca-Garca
,
A.
, and
Martnez-Gonzlez
,
P.
,
2016
, “
Computational Analysis of Distance Operators for the Iterative Closest Point Algorithm
,”
PLoS ONE
,
11
(
10
), pp.
1
19
.
You do not currently have access to this content.