Math models aid designers in assessing relationships between tolerances that contribute to variations of a dependent dimension that must be controlled to achieve some design function at a target (functional) feature. The Tolerance-Maps© (T-Maps©) model for representing limits to allowable manufacturing variations is applied to identify the sensitivity of a dependent dimension to each contributing tolerance of the relationship. For each contributing feature and tolerances specified on it, the appropriate T-Map is chosen from a library of T-Maps, each represented in its own respective local reference frame. Each chosen T-Map is then transformed to the coordinate frame at the target feature, and the accumulation T-Map of these is formed with the Minkowski sum. The shape of a functional T-Map/deviation space is circumscribed (fitted) to this accumulation map. Since fitting is accomplished numerically by intersecting geometric shapes, T-Maps/deviation spaces are constructed with linear half-spaces. The sensitivity for each tolerance-and-feature combination is determined by perturbing the tolerance, refitting the functional shape to the modified accumulation map, and forming a ratio of the increment of functional tolerance to the perturbation. Taking tolerance-feature combinations one by one, sensitivities for an entire stack can be built. For certain loop equations, the same sensitivities result by fitting the functional shape to the T-Map/deviation space for each feature, without a Minkowski sum, and forming the overall result as a scalar sum. Sensitivities are used to optimize tolerance assignments by identifying the tolerances that most strongly influence the dependent dimension at the target feature. Form variations are not included in the analysis.

References

References
1.
Shen
,
Z.
,
Ameta
,
G.
,
Shah
,
J. J.
, and
Davidson
,
J. K.
,
2005
, “
A Comparative Study of Tolerance Analysis Methods
,”
ASME Trans. J. Comput. Inf. Sci. Eng.
,
5
, pp.
247
256
.
2.
Davidson
,
J. K.
,
Mujezinovič
,
A.
, and
Shah
,
J. J.
,
2002
, “
A New Mathematical Model for Geometric Tolerances as Applied to Round Faces
,”
ASME J. Mech. Des.
,
124
, pp.
609
622
.
3.
Mujezinovič
,
A.
,
Davidson
,
J. K.
, and
Shah
,
J. J.
,
2004
, “
A New Mathematical Model for Geometric Tolerances as Applied to Polygonal Faces
,”
ASME J. Mech. Des.
,
126
, pp.
504
518
.
4.
Giordano
,
M.
, and
Duret
,
D.
,
1993
, “
Clearance Space and Deviation Space
,”
Proceedings of the Third CIRP Seminar on Computer-Aided Tolerancing, Ecole Normale Superiere
,
Cachan, France
,
Eyrolles
,
Paris
, pp.
179
196
.
5.
Giordano
,
M.
,
Pairel
,
E.
, and
Samper
,
S.
,
1999
, “
Mathematical Representation of Tolerance Zones
,”
Global Consistency of Tolerances,
Proceedings of the Sixth CIRP International Seminar on Computer-Aided Tolerancing
, University of Twente,
The Netherlands
,
Mar. 22–24
,
F.
vanHouten
and
H.
Kals
, eds.,
Kluwer
,
Dordrecht
, pp.
177
186
.
6.
Singh
,
G.
,
Ameta
,
G.
,
Davidson
,
J. K.
, and
Shah
,
J. J.
,
2013
, “
Tolerance Analysis and Allocation of a Self-Aligning Coupling Assembly Using Tolerance-Maps
,”
ASME J. Mech. Des.
,
135
,
031005
.
7.
Davidson
,
J. K.
, and
Shah
,
J. J.
,
2012
, “
Modeling of Geometric Variations for Line-Profiles
,”
ASME J. Comput. Inf. Sci. Eng.
,
12
(
4
),
041004
.
8.
Haugen
,
E. B.
,
1968
,
Probabilistic Approaches to Design
,
Wiley & Sons
,
New York
.
9.
Whitney
,
D. E.
,
Gilbert
,
O. L.
, and
Jastrzebski
,
M.
,
1994
, “
Representation of Geometric Variations Using Matrix Transforms for Statistical Tolerance Analysis in Assemblies
,”
Res. Eng. Des.
,
6
, pp.
191
210
.
10.
Lee
,
S.
, and
Yi
,
C.
,
1998
, “
Statistical Representation and Computation of Tolerance and Clearance for Assemblability Evaluation
,”
Robotica
16
, pp.
251
264
.
11.
Lehtihet
,
E. A.
, and
Gunasena
,
U. N.
,
1988
, “
Models for the Position and Size Tolerance of a Single Hole
,” Manufacturing Metrology, ASME PED-29,
Presented at the Winter Annual Meeting of the ASME
,
Chicago, IL
,
Nov. 27–Dec. 2
, pp.
49
63
.
12.
Glancy
,
C. G.
, and
Chace
,
K. W.
,
1999
, “
A Second-Order Method for Assembly Tolerance Analysis
,”
Proceedings of the ASME Design Engineering Technical Conference
,
Las Vegas, NV
,
Sep. 12–15
.
13.
Yan
,
H.
,
Wu
,
X.
, and
Yang
,
J.
,
2015
, “
Application of Monte Carlo Method in Tolerance Analysis
,”
Proc. CIRP
,
27
, pp.
281
285
.
14.
Ramnath
,
S.
,
Haghighi
,
P.
,
Chitale
,
A.
,
Davidson
,
J. K.
, and
Shah
,
J. J.
, “
Comparative Study of Tolerance Analysis Methods Applied to a Complex Assembly
,”
Proc. CIRP
,
75
, pp.
208
213
.
15.
Ameta
,
G.
,
Davidson
,
J. K.
, and
Shah
,
J. J.
,
2011
, “
Effects of Size, Orientation, and Form Tolerances on the Frequency Distributions of Clearance between Two Planar Faces
,”
ASME J. Comput. Inf. Sci. Eng.
,
11
,
011002
.
16.
Ameta
,
G.
,
Davidson
,
J. K.
, and
Shah
,
J. J.
,
2010
, “
Statistical Tolerance Allocation for Tab-Slot Assemblies Utilizing Tolerance-Maps
,”
ASME J. Comput. Inf. Sci. Eng.
,
10
,
011005
.
17.
Davidson
,
J. K.
, and
Shah
,
J. J.
,
2002
, “
Geometric Tolerances: A New Application for Line Geometry and Screws
,”
IMechE J. Mech. Eng. Sci. Part C
,
216
(
C1
), pp.
95
104
.
18.
Coxeter
,
H. S. M.
,
1969
,
Introduction to Geometry
,
2nd ed.
,
Wiley
,
Toronto
.
19.
Bhide
,
S.
,
Davidson
,
J. K.
, and
Shah
,
J. J.
,
2003
, “
Areal Coordinates: The Basis for a Mathematical Model for Geometric Tolerances
,”
Proceedings of the seventh CIRP Seminar on Computer-Aided Tolerancing, Ecole Normale Superiere
,
Cachan, France
,
Kluwer
,
Dordrecht, The Netherlands
, pp.
35
44
.
20.
Kalish
,
N.
,
Ramnath
,
S.
,
Haghighi
,
P.
,
Davidson
,
J. K.
,
Shah
,
J. J.
, and
Shah
,
J. V.
,
2018
, “
Mathematical Tools for Automating Digital Fixture Setups: Constructing T-Maps and Relating Metrological Data to Coordinates for T-Maps and Deviation Spaces
,”
ASME J. Comput. Inf. Sci. Eng.
,
18
(
4
),
041009
.
21.
Mansuy
,
M.
,
Giordano
,
M.
, and
Davidson
,
J. K.
,
2013
, “
Comparison of Two Similar Mathematical Models for Tolerance Analysis: T-Map and Deviation Domain
,”
ASME J. Mech. Des.
,
135
,
101008
.
22.
Ameta
,
G.
,
Samper
,
S.
, and
Giordano
,
M.
,
2011
, “
Comparison of Spatial Math Models for Tolerance Analysis: Tolerance-Maps, Deviation Domain, and TTRS
,”
ASME J. Comput. Inf. Sci. Eng.
,
11
(
2
),
021004
.
23.
Teissandier
,
D.
,
Delos
,
V.
, and
Couetard
,
Y.
,
1999
, “
Operations on Polytopes: Application to Tolerance Analysis
,”
Proceedings of the Third CIRP Seminar on Computer-Aided Tolerancing
, University of Twente,
Enschede, The Netherlands
,
Kluwer
,
Dordrecht
, pp.
425
434
.
24.
Ameta
,
G.
,
Davidson
,
J. K.
, and
Shah
,
J. J.
,
2018
, “
Statistical Tolerance Analysis With T-Maps for Assemblies
,”
Proc. CIRP
,
75
, pp.
220
225
.
25.
Ameta
,
G.
,
Davidson
,
J. K.
, and
Shah
,
J. J.
,
2007
, “
Using Tolerance-Maps to Generate Frequency Distributions of Clearance for Pin-Hole Assemblies
,”
ASME J. Comput. Inf. Sci. Eng.
,
7
, pp.
347
359
.
26.
American National Standard ASME Y14.5M
,
2009
,
Dimensioning and Tolerancing
,
The American Society of Mechanical Engineers
,
New York
.
27.
Rao
,
S. S.
,
Haghighi
,
P.
,
Shah
,
J. J.
, and
Davidson
,
J. K.
,
2014
, “
Library of T-Maps for Dimensional and Geometric Tolerances
,”
Proceedings of the 19th ASME Design for Manufacturing and the Life Cycle Conference
,
Buffalo, NY
,
Aug. 4–7
, CD-ROM, Paper #DETC2014-35273.
28.
Delos
,
V.
, and
Teissandier
,
D.
,
2015
, “
Minkowski Sum of Polytopes Defined by Their Vertices
,”
J. Appl. Math Phys.
,
3
(
1
), pp.
62
67
.
29.
Homri
,
L.
,
Teissandier
,
D.
, and
Ballu
,
A.
,
2015
, “
Tolerance Analysis by Polytopes: Taking Into Account Degrees of Freedom With Cap Half-Spaces
,”
Comput. Aid. Des.
,
62
, pp.
112
130
.
30.
Arroyo-Tobón
,
S.
,
Teissandier
,
D.
, and
Delos
,
V.
,
2017
, “
Tolerance Analysis With Polytopes in ℋ-V Description
,”
ASME J. Comput. Inf. Sci. Eng.
,
17
(
4
),
041011
.
31.
Valentine
,
F. A.
,
1964
,
Convex Sets
,
McGraw-Hill
,
New York
.
32.
Ziegler
,
G. M.
,
2007
,
Lectures on Polytopes
,
Springer
,
New York
.
33.
Qhull
, http://www.qhull.org. Accessed March 4, 2019.
34.
Barber
,
C. B.
,
Dobkin
,
D. P.
, and
Huhdanpaa
,
H.
,
1996
, “
The Quickhull Algorithm for Convex Hulls
,”
ACM Trans. Math. Softw.
,
22
(
4
), pp.
469
483
.
35.
Preparata
,
F. P.
, and
Shamos
,
M. I.
,
1985
,
Computational Geometry: An Introduction
,
Springer-Verlag
,
New York
.
36.
Davidson
,
J. K.
, and
Hunt
,
K. H.
,
2004
,
Robots and Screw Theory
,
Oxford University Press
,
Oxford, UK
.
37.
Yuan
,
M. S. C.
, and
Freudenstein
,
F.
,
1971
, “
Kinematic Analysis of Spatial Mechanisms by Means of Screw Coordinates Part 1—Screw Coordinates
,”
ASME J. Eng. Ind.
,
93B
, pp.
61
66
.
38.
Bourdet
,
P.
, and
Clément
,
A.
,
1976
, “
Controlling a Complex Surface With a 3 Axis Measuring Machine
,”
Ann. CIRP Manuf. Technol.
,
25
(
1
), pp.
359
361
.
39.
Giordano
,
M.
,
Samper
,
S.
, and
Petit
,
J.
,
2007
, “
Tolerance Analysis and Synthesis by Means of Deviation Domains, Axi-Symmetric Cases
,”
Models for Computer Aided Tolerancing in Design and Manufacturing
,
Springer
,
Dordrecht, The Netherlands
, pp.
85
94
.
40.
Kalish
N. J.
,
2016
, “
The Theory Behind Setup-Maps: A Computational Tool to Position Parts for Machining
,” MS thesis,
Arizona State University
,
Tempe, AZ
.
41.
Chitale
,
A.
,
Kalish
,
N. J.
,
Davidson
,
J. K.
, and
Shah
,
J. J.
,
2018
, “
Generating T-Maps With the Kinematic Transformation to Model Manufacturing Variations of Parts With Position Tolerancing of Cylinders
,”
Proc. CIRP
,
75
, pp.
214
219
.
42.
Hadwiger
,
H.
,
1957
,
Vorlesungen über Inhalt, Oberfläche und Isoperimetrie
,
Springer
,
New York
.
43.
SIEMENS
, VisVSA Solutions Training Manual, Version 1.3,
2017
.
You do not currently have access to this content.