Additive manufacturing (AM) technologies have been widely used to fabricate three-dimensional (3D) objects quickly and cost-effectively. However, building parts consisting of complex geometries with curvatures can be a challenging process for the traditional AM system whose capability is restricted to planar layered printing. Using six degrees-of-freedom (DOF) industrial robots for AM overcomes this limitation by allowing the material deposition to take place on nonplanar surfaces. In this paper, we present trajectory planning algorithms for 3D printing using nonplanar material deposition. Trajectory parameters are selected to avoid collision with printing surface and satisfy robot constraints. We have implemented our approach by using a 6DOF robot arm. The complex 3D structures with various curvatures were successfully fabricated with a good surface finish.

References

References
1.
Campbell
,
I.
,
Bourell
,
D.
, and
Gibson
,
I.
,
2012
, “
Additive Manufacturing: Rapid Prototyping Comes of Age
,”
Rapid Prototyping J.
,
18
(
4
), pp.
255
258
.
2.
Gao
,
W.
,
Zhang
,
Y.
,
Ramanujan
,
D.
,
Ramani
,
K.
,
Chen
,
Y.
,
Williams
,
C. B.
,
Wang
,
C. C.
,
Shin
,
Y. C.
,
Zhang
,
S.
, and
Zavattieri
,
P. D.
,
2015
, “
The Status, Challenges, and Future of Additive Manufacturing in Engineering
,”
Comput.-Aided Des.
,
69
, pp.
65
89
.
3.
Thompson
,
M. K.
,
Moroni
,
G.
,
Vaneker
,
T.
,
Fadel
,
G.
,
Campbell
,
R. I.
,
Gibson
,
I.
,
Bernard
,
A.
,
Schulz
,
J.
,
Graf
,
P.
,
Ahuja
,
B.
, and
Martina
,
F.
,
2016
, “
Design for Additive Manufacturing: Trends, Opportunities, Considerations, and Constraints
,”
CIRP Ann.
,
65
(
2
), pp.
737
760
.
4.
Shembekar
,
A. V.
,
Yoon
,
Y. J.
,
Kanyuck
,
A.
, and
Gupta
,
S. K.
,
2018
, “
Trajectory Planning for Conformal 3D Printing Using Non-Planar Layers
,”
ASME
Paper No. DETC2018-85975.
5.
Abdullah
,
T. C.
,
Alsharhan
,
T.
, and
Gupta
,
S. K.
,
2017
, “
Enhancing Mechanical Properties of Thin-Walled Structures Using Non-Planar Extrusion Based Additive Manufacturing
,”
ASME
Paper No. MSEC2017-2978.
6.
Zhang
,
G. Q.
,
Li
,
X.
,
Boca
,
R.
,
Newkirk
,
J.
,
Zhang
,
B.
,
Fuhlbrigge
,
T. A.
,
Feng
,
H. K.
, and
Hunt
,
N. J.
,
2014
, “
Use of Industrial Robots in Additive Manufacturing—A Survey and Feasibility Study
,”
41st International Symposium on Robotics
(
ISR/Robotik
2014), Munich, Germany, June 2–3, pp.
1
6
.https://ieeexplore.ieee.org/document/6840175
7.
Brooks
,
B. J.
,
Arif
,
K. M.
,
Dirven
,
S.
, and
Potgieter
,
J.
,
2017
, “
Robot-Assisted 3D Printing of Biopolymer Thin Shells
,”
Int. J. Adv. Manuf. Technol.
,
89
(
1–4
), pp.
957
968
.
8.
Keating
,
S.
, and
Oxman
,
N.
,
2013
, “
Compound Fabrication: A Multi-Functional Robotic Platform for Digital Design and Fabrication
,”
Rob. Comput.-Integr. Manuf.
,
29
(
6
), pp.
439
448
.
9.
Kutzer
,
M. D. M.
, and
DeVries
,
L. D.
,
2017
, “
Testbed for Multilayer Conformal Additive Manufacturing
,”
Technologies
,
5
(
2
), pp. 84–91.
10.
Song
,
X.
,
Pan
,
Y.
, and
Chen
,
Y.
,
2015
, “
Development of a Low-Cost Parallel Kinematic Machine for Multidirectional Additive Manufacturing
,”
ASME J. Manuf. Sci. Eng.
,
137
(
2
), p.
021005
.
11.
Sheng
,
W.
,
Xi
,
N.
,
Chen
,
H.
,
Chen
,
Y.
, and
Song
,
M.
,
2003
, “
Surface Partitioning in Automated Cad-Guided Tool Planning for Additive Manufacturing
,”
IEEE/RSJ International Conference on Intelligent Robots and Systems
(
IROS
2003), Las Vegas, NV, Oct. 27–31, pp.
2072
2077
.
12.
Ganganath
,
N.
,
Cheng
,
C. T.
,
Fok
,
K. Y.
, and
Tse
,
C. K.
,
2016
, “
Trajectory Planning for 3D Printing: A Revisit to Traveling Salesman Problem
,”
Second International Conference on Control, Automation and Robotics
(
ICCAR
), Hong Kong, China, Apr. 28–30, pp.
287
290
.
13.
Jin
,
Y.
,
Du
,
J.
, and
He
,
Y.
,
2017
, “
Optimization of Process Planning for Reducing Material Consumption in Additive Manufacturing
,”
J. Manuf. Syst.
,
44
, pp.
65
78
.
14.
Chakraborty
,
D.
,
Reddy
,
B. A.
, and
Choudhury
,
A. R.
,
2008
, “
Extruder Path Generation for Curved Layer Fused Deposition Modeling
,”
Comput.-Aided Des.
,
40
(
2
), pp.
235
243
.
15.
Davis
,
J. D.
,
Kutzer
,
M. D.
, and
Chirikjian
,
G. S.
,
2016
, “
Algorithms for Multilayer Conformal Additive Manufacturing
,”
ASME J. Comput. Inf. Sci. Eng.
,
16
(
2
), p.
021003
.
16.
Huang
,
B.
, and
Singamneni
,
S. B.
,
2015
, “
Curved Layer Adaptive Slicing (CLAS) for Fused Deposition Modelling
,”
Rapid Prototyping J.
,
21
(
4
), pp.
354
367
.
17.
Zhao
,
G.
,
Ma
,
G.
,
Feng
,
J.
, and
Xiao
,
W.
,
2018
, “
Nonplanar Slicing and Path Generation Methods for Robotic Additive Manufacturing
,”
Int. J. Adv. Manuf. Technol.
,
96
(
9–12
), pp.
3149
3159
.
18.
Liguo Huo
,
L. B.
,
2008
, “
The Joint-Limits and Singularity Avoidance in Robotic Welding
,”
Ind. Rob.: Int. J. Rob. Res. Appl.
,
35
(
5
), pp.
456
464
.
19.
Wang
,
X.
,
Shi
,
Y.
,
Ding
,
D.
, and
Gu
,
X.
,
2016
, “
Double Global Optimum Genetic Algorithmparticle Swarm Optimization-Based Welding Robot Path Planning
,”
Eng. Optim.
,
48
(
2
), pp.
299
316
.
20.
Suh
,
S. H.
,
Woo
,
I. K.
, and
Noh
,
S. K.
,
1991
, “
Development of an Automatic Trajectory Planning System (ATPS) for Spray Painting Robots
,”
IEEE International Conference on Robotics and Automation
(
ROBOT
), Sacramento, CA, Apr. 9–11, pp.
1948
1955
.
21.
Chen
,
H.
,
Fuhlbrigge
,
T.
, and
Li
,
X.
,
2008
, “
Automated Industrial Robot Path Planning for Spray Painting Process: A Review
,”
IEEE International Conference on Automation Science and Engineering
(
COASE
), Arlington, VA, Aug. 23–26, pp.
522
527
.
22.
Kabir
,
A. M.
,
Kaipa
,
K. N.
,
Marvel
,
J.
, and
Gupta
,
S. K.
,
2017
, “
Automated Planning for Robotic Cleaning Using Multiple Setups and Oscillatory Tool Motions
,”
IEEE Trans. Autom. Sci. Eng.
,
14
(
3
), pp.
1364
1377
.
23.
Kabir
,
A. M.
,
Shah
,
B. C.
, and
Gupta
,
S. K.
,
2018
, “
Trajectory Planning for Manipulators Operating in Confined Workspaces
,”
IEEE International Conference on Automation Science and Engineering
(
CASE
), Munich, Germany, Aug. 20–24, pp. 84–91.
24.
Ding
,
D.
,
Pan
,
Z.
,
Cuiuri
,
D.
,
Li
,
H.
, and
Larkin
,
N.
,
2016
, “
Adaptive Path Planning for Wire-Feed Additive Manufacturing Using Medial Axis Transformation
,”
J. Cleaner Prod.
,
133
, pp.
942
952
.
25.
Zhang
,
G. Q.
,
Mondesir
,
W.
,
Martinez
,
C.
,
Li
,
X.
,
Fuhlbrigge
,
T. A.
, and
Bheda
,
H.
,
2015
, “
Robotic Additive Manufacturing Along Curved Surface—A Step Towards Free-Form Fabrication
,”
IEEE International Conference on Robotics and Biomimetics
(
ROBIO
), Zhuhai, China, Dec. 6–9, pp.
721
726
.
26.
Zhang
,
G. Q.
,
Spaak
,
A.
,
Martinez
,
C.
,
Lasko
,
D. T.
,
Zhang
,
B.
, and
Fuhlbrigge
,
T. A.
,
2016
, “
Robotic Additive Manufacturing Process Simulation—Towards Design and Analysis With Building Parameter in Consideration
,”
IEEE International Conference on Automation Science and Engineering
(
CASE
), Fort Worth, TX, Aug. 21–25, pp.
609
613
.
27.
Craig
,
J.
,
2005
,
Introduction to Robotics: Mechanics and Control
,
Pearson/Prentice Hall
, Upper Saddle River, NJ.
28.
Pan
,
J.
,
Chitta
,
S.
, and
Manocha
,
D.
,
2012
, “
FCL: A General Purpose Library for Collision and Proximity Queries
,”
IEEE International Conference on Robotics and Automation
(
ICRA
), Saint Paul, MN, May 14–18, pp.
3859
3866
.
29.
Bjorck
,
A.
,
1996
,
Numerical Methods for Least Squares Problems
,
Society for Industrial and Applied Mathematics
, Philadelphia, PA.
30.
Arun
,
K. S.
,
Huang
,
T. S.
, and
Blostein
,
S. D.
,
1987
, “
Least-Squares Fitting of Two 3-D Point Sets
,”
IEEE Trans. Pattern Anal. Mach. Intell.
,
9
, pp.
698
700
.
31.
Gantenbein
,
S.
,
Masania
,
K.
,
Woigk
,
W.
,
Sesseg
,
J. P. W.
,
Tervoort
,
T. A.
, and
Studart
,
A. R.
,
2018
, “
Three-Dimensional Printing of Hierarchical Liquid-Crystal-Polymer Structures
,”
Nature
,
561
(
7722
), pp.
226
230
.
You do not currently have access to this content.