Additive manufacturing (AM) enables the fabrication of objects using successive additions of mass and energy. In this paper, we explore the use of analytic solutions to model the thermal aspects of AM, in an effort to achieve high computational performance and enable “in the loop” use for feedback control of AM processes. It is shown that the utility of existing analytical solutions is limited due to their underlying assumption of a homogeneous semi-infinite domain. These solutions must, therefore, be enriched from their exact form in order to capture the relevant thermal physics associated with AM processes. Such enrichments include the handling of strong nonlinear variations in material properties, finite nonconvex solution domains, behavior of heat sources very near boundaries, and mass accretion coupled to the thermal problem. The enriched analytic solution method (EASM) is shown to produce results equivalent to those of numerical methods, which require six orders of magnitude greater computational effort. It is also shown that the EASM's computational performance is sufficient to enable AM process feedback control.

References

References
1.
Deckard
,
C. R.
, and
Beaman
,
J. J.
,
1987
, “
Recent Advances in Selective Laser Sintering
,”
14th Conference on Production Research and Technology
, Ann Arbor, MI, Oct. 6, pp.
447
452
.
2.
Gibson
,
I.
, and
Shi
,
D.
,
1997
, “
Material Properties and Fabrication Parameters in Selective Laser Sintering Process
,”
Rapid Prototyping J.
,
3
(
4
), pp.
129
136
.
3.
Agarwala
,
M.
,
Bourell
,
D.
,
Beaman
,
J.
,
Marcus
,
H.
, and
Barlow
,
J.
,
1995
, “
Direct Selective Laser Sintering of Metals
,”
Rapid Prototyping J.
,
1
(
1
), pp.
26
36
.
4.
Simchi
,
A.
,
2006
, “
Direct Laser Sintering of Metal Powders: Mechanism, Kinetics and Microstructural Features
,”
Mater. Sci. Eng. A
,
428
(
1–2
), pp.
148
158
.
5.
Rombouts
,
M.
,
Kruth
,
J. P.
,
Froyen
,
L.
, and
Mercelis
,
P.
,
2006
, “
Fundamentals of Selective Laser Melting of Alloyed Steel Powders
,”
CIRP Ann.-Manuf. Technol.
,
55
(
1
), pp.
187
192
.
6.
Mumtaz
,
K. A.
,
Erasenthiran
,
P.
, and
Hopkinson
,
N.
,
2008
, “
High Density Selective Laser Melting of Waspaloy®
,”
J. Mater. Process. Technol.
,
195
(
1–3
), pp.
77
87
.
7.
Murr
,
L. E.
,
Gaytan
,
S. M.
,
Ramirez
,
D. A.
,
Martinez
,
E.
,
Hernandez
,
J.
,
Amato
,
K. N.
,
Shindo
,
P. W.
,
Medina
,
F. R.
, and
Wicker
,
R. B.
,
2012
, “
Metal Fabrication by Additive Manufacturing Using Laser and Electron Beam Melting Technologies
,”
J. Mater. Sci. Technol.
,
28
(
1
), pp.
1
14
.
8.
Cormier
,
D.
,
Harrysson
,
O.
, and
West
,
H.
,
2004
, “
Characterization of H13 Steel Produced Via Electron Beam Melting
,”
Rapid Prototyping J.
,
10
(
1
), pp.
35
41
.
9.
Lewis
,
G. K.
, and
Schlienger
,
E.
,
2000
, “
Practical Considerations and Capabilities for Laser Assisted Direct Metal Deposition
,”
Mater. Des.
,
21
(
4
), pp.
417
423
.
10.
Mazumder
,
J.
,
Dutta
,
D.
,
Kikuchi
,
N.
, and
Ghosh
,
A.
,
2000
, “
Closed Loop Direct Metal Deposition: Art to Part
,”
Opt. Lasers Eng.
,
34
(
4–6
), pp.
397
414
.
11.
Bandyopadhyay
,
A.
,
Krishna
,
B. V.
,
Xue
,
W.
, and
Bose
,
S.
,
2009
, “
Application of Laser Engineered Net Shaping (LENS) to Manufacture Porous and Functionally Graded Structures for Load Bearing Implants
,”
J. Mater. Sci.: Mater. Med.
,
20
(
Suppl. 1
), pp. 29–34.
12.
Griffith
,
M. L.
,
Keicher
,
D. M.
,
Atwood
,
C. L.
,
Romero
,
J. A.
,
Smugeresky
,
J. E.
,
Harwell
,
L. D.
, and
Greene
,
D. L.
,
1996
, “
Free Form Fabrication of Metallic Components Using Laser Engineered Net Shaping (LENS)
,”
Solid Freeform Fabrication Symposium
, Austin, TX, Aug. 12, pp.
125
131
.
13.
Frazier
,
W. E.
,
2014
, “
Metal Additive Manufacturing: A Review
,”
J. Mater. Eng. Perform.
,
23
(
6
), pp.
1917
1928
.
14.
Singh
,
S.
,
Ramakrishna
,
S.
, and
Singh
,
R.
,
2017
, “
Material Issues in Additive Manufacturing: A Review
,”
J. Manuf. Process.
,
25
, pp.
185
200
.
15.
Cooper
,
K. P.
, and
Wachter
,
R. F.
,
2014
, “
Cyber-Enabled Manufacturing Systems for Additive Manufacturing
,”
Rapid Prototyping J.
,
20
(
5
), pp.
355
359
.
16.
Gibson
,
I.
,
Rosen
,
D.
, and
Stucker
,
B.
,
2015
, “
Software Issues for Additive Manufacturing
,” Additive Manufacturing Technologies SE–15,
Springer
,
New York
, pp.
351
374
.
17.
Gao
,
W.
,
Zhang
,
Y.
,
Ramanujan
,
D.
,
Ramani
,
K.
,
Chen
,
Y.
,
Williams
,
C. B.
,
Wang
,
C. C.
,
Shin
,
Y. C.
,
Zhang
,
S.
, and
Zavattieri
,
P. D.
,
2015
, “
The Status, Challenges, and Future of Additive Manufacturing in Engineering
,”
Comput. Aided Des.
,
69
, pp.
65
89
.
18.
Mani
,
M.
,
Lane
,
B.
,
Feng
,
S.
,
Feng
,
S.
,
Moylan
,
S.
, and
Fesperman
,
R.
,
2015
, “
Measurement Science Needs for Real-Time Control of Additive Manufacturing Powder Bed Fusion Processes
,” National Institute of Standards and Technology, Gaithersburg, MD, Report No.
NISTIR 8036
.https://www.nist.gov/publications/measurement-science-needs-real-time-control-additive-manufacturing-powder-bed-fusion
19.
Jacobs
,
P. F.
,
2002
, “
A Brief History of Rapid Prototyping & Manufacturing: The Growth Years
,”
International Conference on Metal Powder Deposition for Rapid Manufacturing
, San Antonio, TX, Nov. 3, pp.
5
8
.
20.
Ruan
,
J.
,
Sparks
,
T. E.
,
Fan
,
Z.
,
Stroble
,
J. K.
,
Panackal
,
A.
, and
Liou
,
F.
,
2006
, “
A Review of Layer Based Manufacturing Processes for Metals
,”
Solid Freeform Fabrication Proceedings
,
D. L.
Bourell
,
R. H.
Crawford
,
J. J.
Beaman
,
K. L.
Wood
, and
H.
Marcus
, eds.,
University of Texas
,
Austin, TX
, pp.
233
245
.
21.
Toyserkani
,
E.
,
Khajepour
,
A.
, and
Corbin
,
S.
, 2004, Laser Cladding, CRC Press, Boca Raton, FL.
22.
Zhang
,
H.-O.
,
Kong
,
F.-R.
,
Wang
,
G.-L.
, and
Zeng
,
L.-F.
,
2006
, “
Numerical Simulation of Multiphase Transient Field During Plasma Deposition Manufacturing
,”
J. Appl. Phys.
,
100
(
12
), p.
123522
.
23.
Chen
,
T.
, and
Zhang
,
Y.
,
2006
, “
Three-Dimensional Modeling of Selective Laser Sintering of Two-Component Metal Powder Layers
,”
ASME J. Manuf. Sci. Eng.
,
128
(
1
), pp.
299
306
.
24.
Alimardani
,
M.
,
Toyserkani
,
E.
, and
Huissoon
,
J. P.
,
2007
, “
Three-Dimensional Numerical Approach for Geometrical Prediction of Multilayer Laser Solid Freeform Fabrication Process
,”
J. Laser Appl.
,
19
(
1
), p.
14
.
25.
Lambrakos
,
S.
, and
Cooper
,
K.
,
2008
, “
An Algorithm for Inverse Modeling of Layer-by-Layer Deposition Processes
,”
J. Mater. Eng. Perform.
,
18
(
3
), pp.
221
230
.
26.
Khairallah
,
S. A.
,
Anderson
,
A. T.
,
Rubenchik
,
A.
, and
King
,
W. E.
,
2016
, “
Laser Powder-Bed Fusion Additive Manufacturing: Physics of Complex Melt Flow and Formation Mechanisms of Pores, Spatter, and Denudation Zones
,”
Acta Mater.
,
108
, pp.
36
45
.
27.
Michopoulos
,
J. G.
,
Lambrakos
,
S.
, and
Iliopoulos
,
A.
,
2014
, “
Multiphysics Challenges for Controlling Layered Manufacturing Processes Targeting Thermomechanical Performance
,”
ASME
Paper No. DETC2014-35170.
28.
Birnbaum
,
A.
,
Michopoulos
,
J. G.
, and
Iliopoulos
,
A. P.
,
2016
, “
Simulating Geometric and Thermal Aspects of Powder-Jet Laser Additive Manufacturing
,”
ASME
Paper No. DETC2016-59644.
29.
Schoinochoritis
,
B.
,
Chantzis
,
D.
, and
Salonitis
,
K.
,
2017
, “
Simulation of Metallic Powder Bed Additive Manufacturing Processes With the Finite Element Method: A Critical Review
,”
Proc. Inst. Mech. Eng., Part B: J. Eng. Manuf.
,
231
(
1
), pp.
96
117
.
30.
Denlinger
,
E. R.
,
Heigel
,
J. C.
, and
Michaleris
,
P.
,
2014
, “
Residual Stress and Distortion Modeling of Electron Beam Direct Manufacturing Ti–6Al–4V
,”
Proc. Inst. Mech. Eng., Part B: J. Eng. Manuf.
,
229
(10), pp. 1803–1813.
31.
Denlinger
,
E. R.
,
Irwin
,
J.
, and
Michaleris
,
P.
,
2014
, “
Thermomechanical Modeling of Additive Manufacturing Large Parts
,”
ASME J. Manuf. Sci. Eng.
,
136
(
6
), p.
061007
.
32.
Heigel
,
J.
,
Michaleris
,
P.
, and
Reutzel
,
E.
,
2014
, “
Thermo-Mechanical Model Development and Validation of Directed Energy Deposition Additive Manufacturing of Ti–6Al–4V
,”
Addit. Manuf.
,
5
, pp. 9–9.
33.
Martukanitz
,
R.
,
Michaleris
,
P.
,
Palmer
,
T.
,
DebRoy
,
T.
,
Liu
,
Z.-K.
,
Otis
,
R.
,
Heo
,
T. W.
, and
Chen
,
L.-Q.
,
2014
, “
Toward an Integrated Computational System for Describing the Additive Manufacturing Process for Metallic Materials
,”
Addit. Manuf.
,
1–4
, pp.
52
63
.
34.
Michaleris
,
P.
,
2014
, “
Modeling Metal Deposition in Heat Transfer Analyses of Additive Manufacturing Processes
,”
Finite Elem. Anal. Des.
,
86
, pp.
51
60
.
35.
Witherell
,
P.
,
Feng
,
S.
,
Simpson
,
T. W.
,
Saint John
,
D. B.
,
Michaleris
,
P.
,
Liu
,
Z.-K.
,
Chen
,
L.-Q.
, and
Martukanitz
,
R.
,
2014
, “
Toward Metamodels for Composable and Reusable Additive Manufacturing Process Models
,”
ASME J. Manuf. Sci. Eng.
,
136
(
6
), p.
061025
.
36.
Denlinger
,
E. R.
,
Heigel
,
J. C.
,
Michaleris
,
P.
, and
Palmer
,
T.
,
2015
, “
Effect of Inter-Layer Dwell Time on Distortion and Residual Stress in Additive Manufacturing of Titanium and Nickel Alloys
,”
J. Mater. Process. Technol.
,
215
, pp.
123
131
.
37.
Pal
,
D.
,
Patil
,
N.
,
Nikoukar
,
M.
,
Zeng
,
K.
,
Kutty
,
K. H.
, and
Stucker
,
E. B.
, 2013, “
An Integrated to Cyber-Enabled Additive Manufacturing Using Physics Based Coupled Multi-Scale Process Modeling
,” In Solid Freeform Fabrication Proceedings, Austin, TX, Aug. 12, pp. 12–14.
38.
Pal
,
D.
,
Patil
,
N.
,
Zeng
,
K.
,
Teng
,
C.
,
Xu
,
S.
,
Sublette
,
T.
, and
Stucker
,
B.
,
2014
, “
Enhancing Simulations of Additive Manufacturing Processes Using Spatiotemporal Multiscaling
,”
Solid Freeform Fabrication Symposium
, Austin, TX, Aug. 4, pp. 1213–1228.
39.
Francois
,
M. M.
,
Sun
,
A.
,
King
,
W. E.
,
Henson
,
N. J.
,
Tourret
,
D.
,
Bronkhorst
,
C. A.
,
Carlson
,
N. N.
,
Newman
,
C. K.
,
Haut
,
T. S.
,
Bakosi
,
J.
,
Gibbs
,
J. W.
,
Livescu
,
V.
,
Vander Wiel
,
S. A.
,
Clarke
,
A. J.
,
Schraad
,
M. W.
,
Blacker
,
T.
,
Lim
,
H.
,
Rogers
,
T.
,
Owen
,
S.
,
Abdeljawad
,
F.
,
Madison
,
J.
,
Anderson
,
A. T.
,
Fattebert
,
J-L.
,
Ferencz
,
R. M.
,
Hodge
,
N. E.
,
Khairallah
,
S. A.
,
Walton
,
O.
,
2017
, “
Modeling of Additive Manufacturing Processes for Metals: Challenges and Opportunities
,” Curr. Opin. Solid State Mater. Sci.,
21
(1), pp. 198–206
40.
Parteli
,
E. J.
, and
Pöschel
,
T.
,
2016
, “
Particle-Based Simulation of Powder Application in Additive Manufacturing
,”
Powder Technol.
,
288
, pp.
96
102
.
41.
Haeri
,
S.
,
Wang
,
Y.
,
Ghita
,
O.
, and
Sun
,
J.
,
2017
, “
Discrete Element Simulation and Experimental Study of Powder Spreading Process in Additive Manufacturing
,”
Power Technol.
,
306
, pp.
45
54
.
42.
Zohdi
,
T. I.
,
2014
, “
Additive Particle Deposition and Selective Laser Processing a Computational Manufacturing Framework
,”
Comput. Mech.
,
54
(
1
), pp.
171
191
.
43.
Zohdi
,
T.
,
2014
, “
A Direct Particle-Based Computational Framework for Electrically Enhanced Thermo-Mechanical Sintering of Powdered Materials
,”
Math. Mech. Solids
,
19
(
1
), pp.
93
113
.
44.
Zohdi
,
T. I.
,
2015
, “
Modeling and Simulation of Cooling-Induced Residual Stresses in Heated Particulate Mixture Depositions in Additive Manufacturing
,”
Comput. Mech.
,
56
(
4
), pp.
613
630
.
45.
Zohdi
,
T. I.
,
2015
, “
Modeling and Simulation of Laser Processing of Particulate-Functionalized Materials
,”
Arch. Comput. Methods Eng.
,
24
(1), pp. 89–113https://doi.org/10.1007/s11831-015-9160-1
46.
Steuben
,
J. C.
,
Iliopoulos
,
A. P.
, and
Michopoulos
,
J. G.
,
2016
, “
Discrete Element Modeling of Particle-Based Additive Manufacturing Processes
,”
Comput. Methods Appl. Mech. Eng.
,
305
, pp.
537
561
.
47.
Steuben
,
J.
,
Iliopoulos
,
A.
, and
J
,
M.
,
2016
, “
On Multiphysics Discrete Element Modeling of Powder-Based Additive Manufacturing
,”
ASME
Paper No. DETC2016-59634.
48.
Steuben
,
J. C.
,
Iliopoulos
,
A. P.
, and
Michopoulos
,
J. G.
,
2017
, “
Recent Developments of the Multiphysics Discrete Element Method for Additive Manufacturing Modeling and Simulation
,”
ASME
Paper No. DETC2017-67597.
49.
Hu
,
D.
, and
Kovacevic
,
R.
,
2003
, “
Sensing, Modeling and Control for Laser-Based Additive Manufacturing
,”
Int. J. Mach. Tools Manuf.
,
43
(
1
), pp.
51
60
.
50.
Craeghs
,
T.
,
Bechmann
,
F.
,
Berumen
,
S.
, and
Kruth
,
J.-P.
,
2010
, “
Feedback Control of Layerwise Laser Melting Using Optical Sensors
,”
Phys. Procedia
,
5
, pp.
505
514
.
51.
Kruth
,
J.-P.
,
Mercelis
,
P.
,
Van Vaerenbergh
,
J.
, and
Craeghs
,
T.
,
2007
, “
Feedback Control of Selective Laser Melting
,”
Third International Conference on Advanced Research in Virtual and Rapid Prototyping
, Leiria, Portugal, Sept. 24, pp.
521
527
.https://limo.libis.be/primo-explore/fulldisplay?docid=LIRIAS66104&context=L&vid=Lirias&search_scope=Lirias&tab=default_tab&lang=en_US&fromSitemap=1
52.
Everton
,
S. K.
,
Hirsch
,
M.
,
Stravroulakis
,
P.
,
Leach
,
R. K.
, and
Clare
,
A. T.
,
2016
, “
Review of In-Situ Process Monitoring and In-Situ Metrology for Metal Additive Manufacturing
,”
Mater. Des.
,
95
, pp.
431
445
.
53.
Steuben
,
J. C.
,
Birnbaum
,
A. J.
,
Iliopoulos
,
A. P.
, and
Michopoulos
,
J. G.
,
2018
, “
Enriched Analytical Solutions for Additive Manufacturing Modeling and Simulation
,”
ASME
Paper No. DETC2018-86011.
54.
Carslaw
,
H.
, and
Jaeger
,
J.
,
1986
,
Conduction of Heat in Solids
,
Oxford Science Publications
, Oxford, UK.
55.
Rosenthal
,
D.
,
1946
, “
The Theory of Moving Sources of Heat and Its Application of Metal Treatments
,”
Trans. ASME
,
68
, pp.
849
866
.
56.
Pinkerton
,
A. J.
, and
Li
,
L.
,
2004
, “
The Development of Temperature Fields and Powder Flow During Laser Direct Metal Deposition Wall Growth
,”
Proc. Inst. Mech. Eng., Part C: J. Mech. Eng. Sci.
,
218
(
5
), pp.
531
541
.
57.
Pinkerton
,
A. J.
, and
Li
,
L.
,
2004
, “
The Significance of Deposition Point Standoff Variations in Multiple-Layer Coaxial Laser Cladding (Coaxial Cladding Standoff Effects)
,”
Int. J. Mach. Tools Manuf.
,
44
(
6
), pp.
573
584
.
58.
Soylemez
,
E.
,
Beuth
,
J. L.
, and
Tamingerf
,
K.
,
2010
, “
Controlling Melt Pool Dimensions Over a Wide Range of Material Deposition Rates in Electron Beam Additive Manufacturing
,”
21st Solid Freeform Fabrication Symposium
, Austin, TX, Aug. 9, pp.
9
11
.
59.
Cline
,
H.
, and
Anthony
,
T.
,
1977
, “
Heat Treating and Melting Material With a Scanning Laser or Electron Beam
,”
J. Appl. Phys.
,
48
(
9
), pp.
3895
3900
.
60.
Eagar
,
T.
, and
Tsai
,
N.
,
1983
, “
Temperature Fields Produced by Traveling Distributed Heat Sources
,”
Weld. J.
,
62
(
12
), pp.
346
355
.
61.
Woodard
,
P. R.
, and
Dryden
,
J.
,
1999
, “
Thermal Analysis of a Laser Pulse for Discrete Spot Surface Transformation Hardening
,”
J. Appl. Phys.
,
85
(
5
), pp.
2488
2496
.
62.
Kaplan
,
A. F.
,
1997
, “
Surface Processing With Non-Gaussian Beams
,”
Appl. Phys. Lett.
,
70
(
2
), pp.
264
266
.
63.
Mackwood
,
A.
, and
Crafer
,
R.
,
2005
, “
Thermal Modelling of Laser Welding and Related Processes: A Literature Review
,”
Opt. Laser Technol.
,
37
(
2
), pp.
99
115
.
64.
Sundqvist
,
J.
,
Kaplan
,
A.
,
Shachaf
,
L.
, and
Kong
,
C.
,
2017
, “
Analytical Heat Conduction Modelling for Shaped Laser Beams
,”
J. Mater. Process. Technol.
,
247
, pp.
48
54
.
65.
Quintino
,
L.
,
Costa
,
A.
,
Miranda
,
R.
,
Yapp
,
D.
,
Kumar
,
V.
,
Kong
,
C. J.
,
2007
, “
Welding With High Power Fiber Lasers—A Preliminary Study
,”
Mater. Des.
,
28
(
4
), pp.
1231
1237
.
66.
Lambrakos
,
S.
,
2013
, “
Inverse Thermal Analysis of 304l Stainless Steel Laser Welds
,”
J. Mater. Eng. Perform.
,
22
(
8
), pp.
2141
2147
.
67.
Davis
,
J.
,
1998
,
Metals Handbook Desk Edition
(75th Anniversary ASM Handbooks),
2nd ed.
,
Taylor & Francis
, Milton Park, UK.
68.
Li
,
J. J.
,
Johnson
,
W. L.
, and
Rhim
,
W.-K.
,
2006
, “
Thermal Expansion of Liquid Ti–6Al–4V Measured by Electrostatic Levitation
,”
Appl. Phys. Lett.
,
89
(
11
), p.
111913
.
69.
Veldman
,
D.
,
Fey
,
R.
,
Zwart
,
H.
,
van de Wal
,
M.
,
van den Boom
,
J.
, and
Nijmeijer
,
H.
,
2018
, “
Semi-Analytic Approximation of the Temperature Field Resulting From Moving Heat Loads
,”
Int. J. Heat Mass Transfer
,
122
, pp.
128
137
.
70.
Toyserkani
,
E.
,
Khajepour
,
A.
, and
Corbin
,
S.
,
2003
, “
Three-Dimensional Finite Element Modeling of Laser Cladding by Powder Injection: Effects of Powder Feed rate and Travel Speed on the Process
,”
J. Laser Appl.
,
15
(
3
), pp.
153
160
.
71.
Michopoulos
,
J. G.
,
Iliopoulos
,
A. P.
,
Steuben
,
J. C.
,
Birnbaum
,
A. J.
, and
Lambrakos
,
S. G.
,
2018
, “
On the Multiphysics Modeling Challenges for Metal Additive Manufacturing Processes
,”
Addit. Manuf.
,
22
, pp.
784
799
.
You do not currently have access to this content.