The real-life use of a product is often hard to foresee during its development. Fortunately, today's connective products offer the opportunity to collect information about user actions, which enables companies to investigate the actual use for the benefit of next-generation products. A promising application opportunity is to input the information to engineering simulations and increase their realism to (i) reveal how use-related phenomena influence product performance and (ii) to evaluate design variations on how they succeed in coping with real users and their behaviors. In this article, we explore time-stamped usage data from connected fridge-freezers by investigating energy losses caused by door openings and by evaluating control-related design variations aimed at mitigating these effects. By using a fast-executing simulation setup, we could simulate much faster than real time and investigate usage over a longer time. We showed that a simple, single-cycle load pattern based on aggregated input data can be simulated even faster but only produce rough estimates of the outcomes. Our model was devised to explore application potential rather than producing the most accurate predictions. Subject to this reservation, our outcomes indicate that door openings do not affect energy consumption as much as some literature suggests. Through what-if studies we could evaluate three design variations and nevertheless point out that particular solution elements resulted in more energy-efficient ways of dealing with door openings. Based on our findings, we discuss possible impacts on product design practice for companies seeking to collect and exploit usage data from connected products in combination with simulations.

References

References
1.
Park
,
J.
,
Han
,
S. H.
,
Kim
,
H. K.
,
Cho
,
Y.
, and
Park
,
W.
,
2013
, “
Developing Elements of User Experience for Mobile Phones and Services: Survey, Interview, and Observation Approaches
,”
Human Factors Ergonom. Manuf. Serv. Ind.
,
23
(
4
), pp.
279
293
.
2.
Yang
,
X.
,
Moore
,
P. R.
,
Wong
,
C.-B.
,
Pu
,
J.-S.
, and
Kwong Chong
,
S.
,
2007
, “
Product Lifecycle Information Acquisition and Management for Consumer Products
,”
Ind. Manage. Data Syst.
,
107
(
7
), pp.
936
953
.
3.
Pei
,
M.
,
Han
,
R.
,
Kwon
,
D.
,
Lucero
,
A.
,
Vasudevan
,
V.
,
Kwasnick
,
R.
, and
Polasam
,
P. S.
,
2013
, “
Define Electrical Packing Temperature Cycling Requirement With Field Measured User Behavior Data
,”
IEEE
63rd Electronic Components and Technology Conference, Las Vegas, NV, May 28–31, pp.
159
165
.
4.
Porter
,
M. E.
, and
Heppelmann
,
J. E.
,
2015
, “
How Smart, Connected Products are Transforming Companies
,”
Harvard Bus. Rev.
,
93
(
10
), pp.
96
114
.https://hbr.org/2015/10/how-smart-connected-products-are-transforming-companies.pdf
5.
Hribernik
,
K.
,
Franke
,
M.
,
Klein
,
P.
,
Thoben
,
K.-D.
, and
Coscia
,
E.
,
2017
, “
Towards a Platform for Integrating Product Usage Information Into Innovative Product-Service Design
,”
International Conference on Engineering, Technology and Innovation
(
ICE/ITMC
), Funchal, Madeira/Portugal, June 27–29, pp.
1407
1413
.
6.
Fromm
,
H.
,
Habryn
,
F.
, and
Satzger
,
G.
,
2012
, “
Service Analytics: Leveraging Data Across Enterprise Boundaries for Competitive Advantage
,”
Globalization of Professional Services: Innovative Strategies, Successful Processes, Inspired Talent Management, and First-Hand Experiences
,
U.
Bäumer
,
P.
Kreutter
, and
W.
Messner
, eds.,
Springer
,
Berlin
, pp.
139
149
.
7.
Delen
,
D.
, and
Demirkan
,
H.
,
2013
, “
Data, Information and Analytics as Services
,”
Decis. Support Syst.
,
55
(
1
), pp.
359
363
.
8.
Van der Vegte
,
W. F.
,
Kurt
,
F.
, and
Kerem Şengöz
,
O.
, “
Simulation of Product Performance Based on Real Product-Usage Information: First Results of Practical Application to Domestic Refrigerators
,”
ASME
Paper No. 85899
.
9.
Shannon
,
R. E.
,
1998
, “
Introduction to the Art and Science of Simulation
,”
Winter Simulation Conference
, Washington, DC, Dec. 13–16, pp.
7
14
.
10.
Quesnel
,
G.
,
Duboz
,
R.
, and
Ramat
,
É.
,
2009
, “
The Virtual Laboratory Environment–An Operational Framework for Multi-Modelling, Simulation and Analysis of Complex Dynamical Systems
,”
Simul. Modell. Pract. Theory
,
17
(
4
), pp.
641
653
.
11.
Geppert
,
J.
,
2011
, “Modelling of Domestic Refrigerators' Energy Consumption Under Real Life Conditions in Europe,”
Friedrich Wilhelms University
,
Bonn, Germany
.
12.
Huang
,
Y.
, and
Verbraeck
,
A.
,
2009
, “
A Dynamic Data-Driven Approach for Rail Transport System Simulation
,”
Winter Simulation Conference
(
WSC
), Austin, TX, Dec. 13–16, pp.
2553
2562
.
13.
Boschert
,
S.
, and
Rosen
,
R.
,
2016
, “
Digital Twin—The Simulation Aspect
,”
Mechatronic Futures: Challenges and Solutions for Mechatronic Systems and Their Designers
,
P.
Hehenberger
and
D.
Bradley
, eds.,
Springer International Publishing
,
Cham
, Switzerland, pp.
59
74
.
14.
Tao
,
F.
,
Cheng
,
J.
,
Qi
,
Q.
,
Zhang
,
M.
,
Zhang
,
H.
, and
Sui
,
F.
,
2018
, “
Digital Twin-Driven Product Design, Manufacturing and Service With Big Data
,”
Int. J. Adv. Manuf. Technol.
,
94
(
9–12
), pp.
3563
3576
.
15.
Tuegel
,
E. J.
,
Ingraffea
,
A. R.
,
Eason
,
T. G.
, and
Spottswood
,
S. M.
,
2011
, “
Reengineering Aircraft Structural Life Prediction Using a Digital Twin
,”
Int. J. Aerosp. Eng.
,
2011
, p. 154798.
16.
Cummings
,
M. L.
,
2004
, “
The Need for Command and Control Instant Message Adaptive Interfaces: Lessons Learned From Tactical Tomahawk Human-in-the-Loop Simulations
,”
CyberPsychol. Behav.
,
7
(
6
), pp.
653
661
.
17.
Prevot
,
T.
,
Homola
,
J. R.
,
Martin
,
L. H.
,
Mercer
,
J. S.
, and
Cabrall
,
C. D.
,
2012
, “
Toward Automated Air Traffic Control—Investigating a Fundamental Paradigm Shift in Human/Systems Interaction
,”
Int. J. Human-Comput. Interact.
,
28
(
2
), pp.
77
98
.
18.
van der Vegte
,
W. F.
, and
Horváth
,
I.
,
2012
, “
Bulk Simulation of Using Information-Intensive Products and Product-Service Systems: Formal Underpinnings
,”
Tools and Methods of Competitive Engineering
, Delft University of Technology, Delft, The Netherlands, pp.
999
1012
.
19.
Jung
,
S.
,
Lee
,
C.
,
Kim
,
K.
,
Jeong
,
M.
, and
Lee
,
G. G.
,
2009
, “
Data-Driven User Simulation for Automated Evaluation of Spoken Dialog Systems
,”
Comput. Speech Lang.
,
23
(
4
), pp.
479
509
.
20.
Holler
,
M.
,
Uebernickel
,
F.
, and
Brenner
,
W.
,
2016
, “
Understanding the Business Value of Intelligent Products for Product Development in Manufacturing Industries
,”
International Conference on Information Management and Engineering
(
ICIME
), Istanbul, Turkey, Nov. 2–5, pp.
18
24
.
21.
Elias
,
E.
,
Dekoninck
,
E.
, and
Culley
,
S.
,
2008
, “
Assessing User Behaviour for Changes in the Design of Energy Using Domestic Products
,”
IEEE
International Symposium on Electronics and the Environment
, San Francisco, CA, May 19–22, pp.
1
6
.
22.
Paul
,
R. J.
,
1991
, “
Recent Developments in Simulation Modelling
,”
J. Oper. Res. Soc.
,
42
(
3
), pp.
217
226
.
23.
Qiao
,
G. S.
,
Riddick
,
P.
, and
McLean
,
D.
,
2003
, “
Data Driven Design And Simulation System Based On XML
,”
Winter Simulation Conference
(
WSC
), New Orleans, LA, Dec. 7–10, pp.
1143
1148
.
24.
Barlas
,
P.
, and
Heavey
,
C.
,
2016
, “
Automation of Input Data to Discrete Event Simulation for Manufacturing: A Review
,”
Int. J. Model. Simul. Sci. Comput.
,
7
(
1
), p.
1630001
.
25.
Gonder
,
J.
,
Markel
,
T.
,
Thornton
,
M.
, and
Simpson
,
A.
,
2007
, “
Using Global Positioning System Travel Data to Assess Real-World Energy Use of Plug-In Hybrid Electric Vehicles
,”
Transp. Res. Rec.: J. Transp. Res. Board
,
2017
(
1
), pp.
26
32
.
26.
Urban
,
B.
, and
Roth
,
K.
,
2014
,
A Data-Driven Framework for Comparing Residential Thermostat Energy Performance
,
Fraunhofer
,
Boston, MA
.
27.
Goyal
,
A.
,
Aprilia
,
E.
,
Janssen
,
G.
,
Kim
,
Y.
,
Kumar
,
T.
,
Mueller
,
R.
,
Phan
,
D.
,
Raman
,
A.
,
Schuddebeurs
,
J.
, and
Xiong
,
J.
,
2016
, “
Asset Health Management Using Predictive and Prescriptive Analytics for the Electric Power Grid
,”
IBM J. Res. Develop.
,
60
(
1
), pp.
1–14
.
28.
Fiore
,
E.
,
2018
, “
Systemic Design for the Innovation of Home Appliances
,” Politecnico di Torino, Turin, Italy.
29.
Harrington
,
L.
,
Aye
,
L.
, and
Fuller
,
R. J.
,
2018
, “
Opening the Door on Refrigerator Energy Consumption: Quantifying the Key Drivers in the Home
,”
Energy Effic.
,
11
(
6
), pp.
1519
1539
.
30.
Dewha
,
E. E. S.
,
2008
,
Energy Use in the Australian Residential Sector 1986–2020
, Department of the Environment, Water, Heritage and the Arts, Canberra, Australia.
31.
Yao
,
R.
, and
Steemers
,
K.
,
2005
, “
A Method of Formulating Energy Load Profile for Domestic Buildings in the UK
,”
Energy Build.
,
37
(
6
), pp.
663
671
.
32.
JRAIA,
2018
,
World Air Conditioner Demand by Region
,
The Japan Refrigeration and Air Conditioning Industry Association
,
Tokyo, Japan
.
33.
Biglia
,
A.
,
Gemmell
,
A. J.
,
Foster
,
H. J.
, and
Evans
,
J. A.
,
2017
, “
Temperature and Energy Performance of Domestic Cold Appliances in Households in England
,”
Int. J. Refrig.
,
33
, pp.
172
184
.
34.
James
,
C.
,
Onarinde
,
B. A.
, and
James
,
S. J.
,
2017
, “
The Use and Performance of Household Refrigerators: A Review
,”
Compr. Rev. Food Sci. Food Saf.
,
16
(
1
), pp.
160
179
.
35.
Geppert
,
J.
, and
Stamminger
,
R.
,
2010
, “
Do Consumers Act in a Sustainable Way Using Their Refrigerator? The Influence of Consumer Real Life Behaviour on the Energy Consumption of Cooling Appliances
,”
Int. J. Consum. Stud.
,
34
(
2
), pp.
219
227
.
36.
Haines
,
V.
,
Lomas
,
K.
,
Thomson
,
M.
,
Richardson
,
I.
,
Bhamra
,
T.
,
Giulietti
,
M.
,
Tang
,
T.
,
Lawton
,
C.
,
Guo
,
L.
, and
Allinson
,
D.
,
2010
, “How Trends in Appliances Affect Domestic CO2 Emissions: A Review of Home and Garden Appliances,”
Department of Energy and Climate Change (DECC)
,
London
.
37.
Sarmah
,
B.
,
2015
, “
Energy Saving in Star Marked Refrigerators and Effect of Door Opening Frequency on Energy Consumption of Residential Refrigerators
,”
Int. J. Res. Eng. Technol.
,
4
(
2
), pp.
684
700
.https://ijret.org/volumes/2015v04/i02/IJRET20150402095.pdf
38.
Borges
,
B. N.
,
Melo
,
C.
, and
Hermes
,
C. J.
,
2015
, “
Transient Simulation of a Two-Door Frost-Free Refrigerator Subjected to Periodic Door Opening and Evaporator Frosting
,”
Appl. Energy
,
147
, pp.
386
395
.
39.
Mastrullo
,
R.
,
Mauro
,
A.
,
Menna
,
L.
,
Palma
,
A.
, and
Vanoli
,
G.
,
2014
, “
Transient Model of a Vertical Freezer With Door Openings and Defrost Effects
,”
Appl. Energy
,
121
, pp.
38
50
.
40.
Kumar
,
S.
, and
Phrommathed
,
P.
,
2005
,
Research Methodology
, SAGE, Los Angeles, CA.
41.
Kulakowski
,
B. T.
,
Gardner
,
J. F.
, and
Shearer
,
J. L.
,
2007
,
Dynamic Modeling and Control of Engineering Systems
,
Cambridge University Press
, Cambridge, UK.
42.
Åström
,
K.
, and
Kumar
,
P.
,
2014
, “
Control: A Perspective
,”
Automatica
,
50
(
1
), pp.
3
43
.
43.
Ng
,
L.
,
2014
, “
Refrigeration Cycle in Simscape
,” Mathworks Inc., Natick, MA, accessed Jan 8, 2019, https://mathworks.com/matlabcentral/fileexchange/46448-refrigeration-cycle-in-simscape
44.
Bakker
,
C.
,
Wang
,
F.
,
Huisman
,
J.
, and
den Hollander
,
M.
,
2014
, “
Products That Go Round: Exploring Product Life Extension Through Design
,”
J. Cleaner Prod.
,
69
, pp.
10
16
.
45.
Kleijnen
,
J. P.
, and
Sargent
,
R. G.
,
2000
, “
A Methodology for Fitting and Validating Metamodels in Simulation
,”
Eur. J. Oper. Res.
,
120
(
1
), pp.
14
29
.
46.
Ljung
,
L.
,
1998
, “
System Identification
,”
Signal Analysis and Prediction
,
A.
Procházka
,
J.
Uhlíř
,
P. W. J.
Rayner
, and
N. G.
Kingsbury
, eds.,
Birkhäuser Boston
,
Boston, MA
, pp.
163
173
.
47.
Babyak
,
M. A.
,
2004
, “
What You See May Not Be What You Get: A Brief, Nontechnical Introduction to Overfitting in Regression-Type Models
,”
Psychosom. Med.
,
66
(
3
), pp.
411
421
.
48.
Létourneau
,
S.
,
Yang
,
C.
,
Drummond
,
C.
,
Scarlett
,
E.
,
Valdés
,
J.
, and
Zaluski
,
M.
,
2005
, “
A Domain Independent Data Mining Methodology for Prognostics
,”
Essential Technologies for Successful Prognostics, 59th Meeting of the Machinery Failure Prevention Technology Society
, Virginia Beach, VA, Apr. 18–21.https://www.researchgate.net/publication/44085766_A_Domain_Independent_Data_Mining_Methodology_for_Prognostics
49.
Hamid
,
N. H. A.
,
Kamal
,
M. M.
, and
Yahaya
,
F. H.
,
2009
, “
Application of PID Controller in Controlling Refrigerator Temperature
,”
Fifth International Colloquium on Signal Processing & Its Applications
, Kuala Lumpur, Malaysia, Mar. 6–8, pp.
378
384
.
You do not currently have access to this content.