The revolution of additive manufacturing (AM) has led to many opportunities in fabricating complex and novel products. The increase of printable materials and the emergence of novel fabrication processes continuously expand the possibility of engineering systems in which product components are no longer limited to be single material, single scale, or single function. In fact, a paradigm shift is taking place in industry from geometry-centered usage to supporting functional demands. Consequently, engineers are expected to resolve a wide range of complex and difficult problems related to functional design. Although a higher degree of design freedom beyond geometry has been enabled by AM, there are only very few computational design approaches in this new AM-enabled domain to design objects with tailored properties and functions. The objectives of this review paper are to provide an overview of recent additive manufacturing developments and current computer-aided design methodologies that can be applied to multimaterial, multiscale, multiform, and multifunctional AM technologies. The difficulties encountered in the computational design approaches are summarized and the future development needs are emphasized. In the paper, some present applications and future trends related to additive manufacturing technologies are also discussed.

References

References
1.
Altair
, 2017, “OptiStruct,” Troy, MI, accessed Nov. 20, 2018, https://altairhyperworks.com/product/OptiStruct
2.
Hu
,
Z.
,
Thiyagarajan
,
K.
,
Bhusal
,
A.
,
Letcher
,
T.
,
Fan
,
Q.
,
Liu
,
Q.
, and
Salem
,
D.
,
2017
, “
Design of Ultra-Lightweight and High-Strength Cellular Structural Composites Inspired by Biomimetics
,”
Compos. Part B: Eng.
,
121
, pp.
108
121
.
3.
Compton
,
B.
, and
Lewis
,
J.
,
2014
, “
3D-Printing of Lightweight Cellular Composites
,”
Adv. Mater.
,
26
(
34
), pp.
5930
5935
.
4.
Gu
,
G. X.
,
Takaffoli
,
M.
,
Hsieh
,
A.
, and
Buehler
,
M.
,
2017
, “
Hierarchically Enhanced Impact Resistance of Bioinspired Composites
,”
Adv. Mater.
,
29
(
28
), p.
1700060
.
5.
Yang
,
Y.
,
Chen
,
Z.
,
Song
,
X.
,
Zhang
,
Z.
,
Zhang
,
J.
,
Shung
,
K. K.
,
Zhou
,
Q.
, and
Chen
,
Y.
,
2017
, “
Biomimetic Anisotropic Reinforcement Architectures by Electrically Assisted Nanocomposite 3D Printing
,”
Adv. Mater.
,
29
(
11
), p.
1605750
.
6.
Wang
,
K.
,
Wu
,
C.
,
Qian
,
Z.
,
Zanga
,
C.
, and
Wanga
,
B.
,
2016
, “
Dual-Material 3D Printed Metamaterials With Tunable Mechanical Properties for Patient-Specific Tissue-Mimicking Phantoms
,”
Addit. Manuf.
,
12
, pp.
31
37
.
7.
Saxena
,
K. K.
,
Calius
,
E. P.
, and
Das
,
R.
,
2016
, “
Tailoring Cellular Auxetics for Wearable Applications With Multimaterial 3D Printing
,”
ASME
Paper No. IMECE2016-67556.
8.
El-Sherbiny
,
I. M.
, and
Yacoub
,
M. H.
,
2013
, “
Hydrogel Scaffolds for Tissue Engineering: Progress and Challenges
,”
Global Cardiol. Sci. Pract.
,
3
, pp.
316
342
.
9.
Yang
,
Y.
,
Li
,
X.
,
Zheng
,
X.
,
Chen
,
Z.
,
Zhou
,
Q.
, and
Chen
,
Y.
,
2018
, “
3D-Printed Biomimetic Super-Hydrophobic Structure for Microdroplet Manipulation and Oil/Water Separation
,”
Adv. Mater.
,
30
(
9
), p.
1704912
.
10.
Vaezi
,
M.
,
Seitz
,
H.
, and
Yang
,
S.
,
2013
, “
A Review on 3D Micro-Additive Manufacturing Technologies
,”
Int. J. Adv. Manuf. Technol.
,
67
(
5–8
), pp.
1721
1754
.
11.
Frazier
,
W. E.
,
2014
, “
Metal Additive Manufacturing: A Review
,”
J. Mater. Eng. Perform.
,
23
(
6
), pp.
1917
1928
.
12.
Huang
,
S.
,
Liu
,
P.
,
Mokasdar
,
A.
, and
Hou
,
L.
,
2013
, “
Additive Manufacturing and Its Societal Impact: A Literature Review
,”
Int. J. Adv. Manuf. Technol.
,
67
(
5–8
), pp.
1191
1203
.
13.
Gao
,
W.
,
Zhang
,
Y.
,
Ramanujan
,
D.
,
Ramani
,
K.
,
Chen
,
Y.
,
Williams
,
C. B.
,
Wang
,
C. C. L.
,
Shin
,
Y. C.
,
Zhang
,
S.
, and
Zavattieri
,
P. D.
,
2015
, “
The Status, Challenges, and Future of Additive Manufacturing in Engineering
,”
Comput. Aided Des.
,
69
, pp.
65
89
.
14.
Guo
,
N.
, and
Leu
,
M.
,
2013
, “
Additive Manufacturing: Technology, Applications and Research Needs
,”
Front. Mech. Eng.
,
8
(
3
), pp.
215
243
.
15.
Kong
,
Y. L.
,
Tamargo
,
I. A.
,
Kim
,
H.
,
Johnson
,
B. N.
,
Gupta
,
M. K.
,
Koh
,
T.-W.
,
Chin
,
H.-A.
,
Steingart
,
D. A.
,
Rand
,
B. P.
, and
McAlpine
,
M. C.
,
2014
, “
3D Printed Quantum Dot Light-Emitting Diodes
,”
Nano Lett.
,
14
(
12
), pp.
7017
7023
.
16.
Espalin
,
D.
,
Ramirez
,
J. A.
,
Medina
,
F.
, and
Wicker
,
R.
,
2014
, “
Multi-Material, Multi-Technology FDM: Exploring Build Process Variations
,”
Rapid Prototyping J.
,
20
(
3
), pp.
236
244
.
17.
Oxman
,
N.
,
Tsai
,
E.
, and
Firstenberg
,
M.
,
2012
, “
Digital Anisotropy: A Variable Elasticity Rapid Prototyping Platform
,”
Virtual Phys. Prototyping
,
7
(
4
), pp.
261
274
.
18.
Sitthi-Amorn
,
P.
,
Ramos
,
J. E.
,
Wangy
,
Y.
,
Kwan
,
J.
,
Lan
,
J.
,
Wang
,
W.
, and
Matusik
,
W.
,
2015
, “
MultiFab: A Machine Vision Assisted Platform for Multi-Material 3D Printing
,”
ACM Trans. Graph.
,
34
(
4
), p.
129
.http://cfg.mit.edu/content/multifab-machine-vision-assisted-platform-multi-material-3d-printing
19.
Yang
,
H.
,
Lim
,
J.
,
Liu
,
Y.
,
Qi
,
X.
,
Yap
,
Y.
,
Dikshit
,
V.
,
Yeong
,
W. Y.
, and
Wei
,
J.
,
2017
, “
Performance Evaluation of ProJet Multi-Material Jetting 3D Printer
,”
Virtual Phys. Prototyping
,
12
(
1
), pp.
95
103
.
20.
Willis
,
K.
,
Brockmeyer
,
E.
,
Hudson
,
S.
, and
Poupyrev
,
I.
,
2012
, “
Printed Optics: 3D Printing of Embedded Optical Elements for Interactive Devices
,”
25th Annual ACM Symposium on User Interface Software and Technology
, Cambridge, MA, Oct. 7, pp.
589
598
.
21.
Li
,
X.
, and
Chen
,
Y.
,
2017
, “
Micro-Scale Feature Fabrication Using Immersed Surface Accumulation
,”
J. Manuf. Process.
,
28
(
3
), pp.
531
540
.
22.
Wang
,
Q.
,
Jackson
,
J.
,
Ge
,
Q.
,
Hopkins
,
J.
,
Spadaccini
,
C.
, and
Fang
,
N.
,
2016
, “
Lightweight Mechanical Metamaterials With Tunable Negative Thermal Expansion
,”
Phys. Rev. Lett.
,
117
(
17
), p.
175901
.
23.
Ge
,
Q.
,
Sakhaei
,
A.
,
Lee
,
H.
,
Dunn
,
C.
,
Fang
,
N.
, and
Dunn
,
M.
,
2016
, “
Multimaterial 4D Printing With Tailorable Shape Memory Polymers
,”
Sci. Rep.
,
6
, p.
31110
.
24.
Choi
,
J.-W.
,
Kim
,
H.-C.
, and
Wicker
,
R.
,
2011
, “
Multi-Material Stereolithography
,”
J. Mater. Process. Technol.
,
211
(
3
), pp.
318
328
.
25.
Zhou
,
C.
,
Chen
,
Y.
,
Yang
,
Z.
, and
Khoshnevis
,
B.
,
2011
, “
Development of a Multi-Material Mask-Image-Projection-Based Stereolithography for the Fabrication of Digital Materials
,”
22nd International Symposium on Solid Freeform Fabrication
, Austin, TX, Aug. 8, pp.
65
80
.http://sffsymposium.engr.utexas.edu/Manuscripts/2011/2011-06-Zhou.pdf
26.
Melnikova
,
R.
,
Ehrmann
,
A.
, and
Finsterbusch
,
K.
,
2014
, “
3D Printing of Textile-Based Structures by Fused Deposition Modelling (FDM) With Different Polymer Materials
,”
IOP Conf. Ser. Mater. Sci. Eng.
,
62
(
1
), p.
012018
.
27.
Jafari
,
M.
,
Han
,
W.
,
Mohammadi
,
F.
,
Safari
,
A.
,
Danforth
,
S.
, and
Langrana
,
N.
,
2000
, “
A Novel System for Fused Deposition of Advanced Multiple Ceramics
,”
Rapid Prototyping J.
,
6
(
3
), pp.
161
175
.
28.
Salea
,
A.
,
Prathumwan
,
R.
,
Junpha
,
J.
, and
Subannajui
,
K.
,
2017
, “
Metal Oxide Semiconductor 3D Printing: Preparation of Copper (ii) Oxide by Fused Deposition Modelling for Multi-Functional Semiconducting Applications
,”
J. Mater. Chem. C
,
5
(
19
), pp.
4614
4620
.
29.
Liu
,
W.
,
Zhang
,
Y. S.
,
Heinrich
,
M. A.
,
Ferrari
,
F. D.
,
Jang
,
H. L.
,
Bakht
,
S. M.
,
Alvarez
,
M. M.
,
Yang
,
J.
,
Li
,
Y.-C.
,
Santiago
,
G. T.-D.
,
Miri
,
A. K.
,
Zhu
,
K.
,
Khoshakhlagh
,
P.
,
Prakash
,
G.
,
Cheng
,
H.
,
Guan
,
X.
,
Zhong
,
Z.
,
Ju
,
J.
,
Zhu
,
G. H.
,
Jin
,
X.
, and
Shin
,
S. R.
,
2016
, “
Rapid Continuous Multimaterial Extrusion Bioprinting
,”
Adv. Mater.
,
29
(
3
), p.
1604630
.
30.
Vaezi
,
M.
,
Chianrabutra
,
S.
,
Mellor
,
B.
, and
Yang
,
S.
,
2013
, “
Multiple Material Additive Manufacturing—Part 1: A Review
,”
Virtual Phys. Prototyping
,
8
(
1
), pp.
19
50
.
31.
Liu
,
K.
, and
Lei
,
J.
,
2011
, “
Multifunctional Integration: From Biological to Bio-Inspired Materials
,”
ACS Nano
,
5
(
9
), pp.
6786
6790
.
32.
Choi
,
J.
,
Yamashita
,
M.
,
Sakakibara
,
J.
,
Kaji
,
Y.
,
Oshika
,
T.
, and
Wicker
,
R.
,
2010
, “
Combined Micro and Macro Additive Manufacturing of a Swirling Flow Coaxial Phacoemulsifier Sleeve With Internal Micro-Vanes
,”
Biomed Microdev.
,
12
(
5
), pp.
875
886
.
33.
Li
,
X.
,
Baldacchin
,
T.
,
Song
,
X.
, and
Chen
,
Y.
,
2016
, “
Multi-Scale Additive Manufacturing: An Investigation on Building Objects With Macro-, Micro- and Nano-Scales Features
,”
11th International Conference on Micro Manufacturing
, Irvine, CA, Mar. 29–31, p.
96
.
34.
Li
,
X.
,
Yang
,
Y.
, and
Chen
,
Y.
,
2017
, “
Bio-Inspired Micro-Scale Texture Fabrication Based on Immersed Surface Accumulation Process
,”
World Congress on Micro and Nano Manufacturing Conference
, Kaohsiung, Taiwan, Mar. 27–30, pp.
33
36
.https://www.researchgate.net/publication/317344375_Bio-inspired_Micro-scale_Texture_Fabrication_based_on_Immersed_Surface_Accumulation_Process_2017_p_008
35.
Chen
,
Y.
,
Mao
,
H.
, and
Li
,
X.
,
2016
, “
Mask Video Projection Based Stereolithography With Continuous Resin Flow
,” University of Southern California, Los Angeles, CA, Patent No.
US20160368210A1
.https://patents.google.com/patent/US20160368210
36.
Pan
,
Y.
,
Zhao
,
X.
,
Zhou
,
C.
, and
Chen
,
Y.
,
2012
, “
Smooth Surface Fabrication in Mask Projection Based Stereolithography
,”
J. Manuf. Processes
,
14
(
4
), pp.
460
470
.
37.
Emami
,
M.
,
Barazandeh
,
F.
, and
Yaghmai
,
F.
,
2014
, “
Scanning-Projection Based Stereolithography: Method and Structure
,”
Sens. Actuators A: Phys.
,
218
(
1
), pp.
116
124
.
38.
Ha
,
Y.-M.
,
Park
,
I.-B.
,
Kim
,
H.-C.
, and
Le
,
S.-H.
,
2010
, “
Three-Dimensional Microstructure Using Partitioned Cross-Sections in Projection Microstereolithography
,”
Int. J. Precis. Eng. Manuf.
,
11
(
2
), pp.
335
340
.
39.
Lee
,
M.
,
Cooper
,
G.
,
Hinkley
,
T.
,
Gibson
,
G.
,
Padgett
,
M.
, and
Cronin
,
L.
,
2015
, “
Development of a 3D Printer Using Scanning Projection Stereolithography
,”
Sci. Rep.
,
5
, p.
9875
.
40.
Pan
,
Y.
, and
Dagli
,
C.
,
2016
, “
Dynamic Resolution Control in a Laser Projection Based Stereolithography System
,”
Rapid Prototyping J.
,
23
(
1
), pp.
190
200
.
41.
Li
,
Y.
,
Mao
,
H.
,
Liu
,
H.
,
Yao
,
Y.
,
Wang
,
Y.
,
Song
,
B.
,
Chen
,
Y.
, and
Wu
,
W.
,
2015
, “
Stereolithography With Variable Resolutions Using Optical Filter With High-Contrast Gratings
,”
J. Vac. Sci. Technol. B
,
33
(
6
), p.
06F604
.
42.
Mao
,
H.
,
Leung
,
Y.-S.
,
Li
,
Y.
,
Hu
,
P.
,
Wu
,
W.
, and
Chen
,
Y.
,
2017
, “
Multiscale Stereolithography Using Shaped Beams
,”
ASME J. Micro- Nano-Manuf.
,
5
(
4
), p.
040905
.
43.
Wu
,
W.
,
DeConinck
,
A.
, and
Lewis
,
J.
,
2011
, “
Omnidirectional Printing of 3D Microvascular Networks
,”
Adv. Mater.
,
23
(
24
), pp.
H178
H183
.
44.
Qin
,
Z.
,
Compton
,
B.
,
Lewis
,
J.
, and
Buehler
,
M.
,
2015
, “
Structural Optimization of 3D-Printed Synthetic Spider Webs for High Strength
,”
Nat. Commun.
,
6
, p.
7038
.
45.
Thiele
,
S.
,
Arzenbacher
,
K.
,
Gissibl
,
T.
,
Giessen
,
H.
, and
Herkommer
,
A.
,
2017
, “
3D-Printed Eagle Eye: Compound Microlens System for Foveated Imaging
,”
Sci. Adv.
,
3
(
2
), p.
e1602655
.
46.
Gissibl
,
T.
,
Thiele
,
S.
,
Herkommer
,
A.
, and
Giessen
,
H.
,
2016
, “
Two-Photon Direct Laser Writing of Ultracompact Multi-Lens Objectives
,”
Nat. Photonics
,
10
(
8
), pp.
554
560
.
47.
Kolesky
,
D.
,
Truby
,
R.
,
Gladman
,
A.
,
Busbee
,
T.
,
Homan
,
K.
, and
Lewis
,
J.
,
2014
, “
3D Bioprinting of Vascularized, Heterogeneous Cell‐Laden Tissue Constructs
,”
Adv. Mater.
,
26
(
19
), pp.
3124
3130
.
48.
Au
,
A.
,
Huynh
,
W.
,
Horowitz
,
L.
, and
Folch
,
A.
,
2016
, “
3D‐Printed Microfluidics
,”
Angew. Chem. Int. Ed.
,
55
(
12
), pp.
3862
3881
.
49.
O'Bryan
,
C.
,
Bhattacharjee
,
T.
,
Hart
,
S.
,
Kabb
,
C.
,
Schulze
,
K.
,
Chilakala
,
I.
,
Sumerlin
,
B.
,
Sawyer
,
W.
, and
Angelini
,
T.
,
2017
, “
Self-Assembled Micro-Organogels for 3D Printing Silicone Structures
,”
Sci. Adv.
,
3
(
5
), p.
e1602800
.
50.
Hinton
,
T.
,
Jallerat
,
Q.
,
Palchesko
,
R. N.
,
Park
,
J.
,
Grodzicki
,
M.
,
Shue
,
H.-J.
,
Ramadan
,
M.
,
Hudson
,
A.
, and
Feinberg
,
A.
,
2015
, “
Three-Dimensional Printing of Complex Biological Structures by Freeform Reversible Embedding of Suspended Hydrogels
,”
Sci. Adv.
,
1
(
9
), p.
e1500758
.
51.
Bhattacharjee
,
T.
,
Zehnder
,
S.
,
Rowe
,
K.
,
Jain
,
S.
,
Nixon
,
R.
,
Sawyer
,
W.
, and
Angelini
,
T.
,
2018
, “
Writing in the Granular Gel Medium
,”
Sci. Adv.
,
1
(
8
), p.
e1500655
.
52.
Lee
,
V.
,
Lanzi
,
A.
,
Ngo
,
H.
,
Yoo
,
S.-S.
,
Vincent
,
P.
, and
Dai
,
G.
,
2014
, “
Generation of Multi-Scale Vascular Network System Within 3D Hydrogel Using 3D Bio-Printing Technology
,”
Cellular Mol. Bioengineering
,
7
(
3
), pp.
460
472
.
53.
Yang
,
Y.
,
Song
,
X.
,
Li
,
X.
,
Chen
,
Z.
,
Zhou
,
C.
,
Zhou
,
Q.
, and
Chen
,
Y.
,
2018
, “
Recent Progress in Biomimetic Additive Manufacturing Technology: From Materials to Functional Structures
,”
Adv. Mater.
,
30
(
36
), p.
1706539
.
54.
Wen
,
L.
,
Weaver
,
J.
, and
Lauder
,
G.
,
2017
, “
Biomimetic Shark Skin: Design, Fabrication and Hydrodynamic Function
,”
J. Exp. Biol.
,
217
(
10
), pp.
1656
1666
.
55.
Bai
,
L.
,
Xie
,
Z.
,
Wang
,
W.
,
Yuan
,
C.
,
Zhao
,
Y.
,
Mu
,
Z.
,
Zhong
,
Q.
, and
Gu
,
Z.
,
2014
, “
Bio-Inspired Vapor-Responsive Colloidal Photonic Crystal Patterns by Inkjet Printing
,”
ACS Nano
,
8
(
11
), pp.
11094
11100
.
56.
Tibbits
,
S.
,
2014
, “
4D Printing: Multi‐Material Shape Change
,”
Archit. Des.
,
84
(
1
), pp.
116
121
.
57.
Tibbits
,
S.
,
McKnelly
,
C.
,
Olguin
,
C.
,
Dikovsky
,
D.
, and
Hirsch
,
S.
,
2014
, “
4D Printing and Universal Transformation
,”
34th Annual Conference of the Association for Computer Aided Design in Architecture
, Los Angeles, CA, Oct. 23–25, pp.
539
548
.http://papers.cumincad.org/data/works/att/acadia14_539.content.pdf
58.
Ge
,
Q.
,
Qi
,
H.
, and
Dunn
,
M.
,
2013
, “
Active Materials by Four-Dimension Printing
,”
Appl. Phys. Lett.
,
103
(
13
), p.
131901
.
59.
Deng
,
D.
, and
Chen
,
Y.
,
2015
, “
Origami-Based Self-Folding Structure Design and Fabrication Using Projection Based Stereolithography
,”
ASME J. Mech. Des.
,
137
(
2
), p.
021701
.
60.
Deng
,
D.
,
Kwok
,
T.-H.
, and
Chen
,
Y.
,
2017
, “
Four-Dimensional Printing: Design and Fabrication of Smooth Curved Surface Using Controlled Self-Folding
,”
ASME J. Mech. Des.
,
139
(
8
), p.
081702
.
61.
Kwok
,
T.-H.
,
Wang
,
C. C. L.
,
Deng
,
D.
,
Zhang
,
Y.
, and
Chen
,
Y.
,
2015
, “
Four-Dimensional Printing for Freeform Surfaces: Design Optimization of Origami and Kirigami Structures
,”
ASME J. Mech. Des.
,
137
(
11
), p.
111413
.
62.
Momeni
,
F.
,
Hassani
,
S.
,
Liu
,
N. X.
, and
Ni
,
J.
,
2017
, “
A Review of 4D Printing
,”
Mater. Des.
,
122
, pp.
42
79
.
63.
Ding
,
Z.
,
Yuan
,
C.
,
Peng
,
X.
,
Wang
,
T.
,
Qi
,
H.
, and
Dunn
,
M.
,
2017
, “
Direct 4D Printing Via Active Composite Materials
,”
Sci. Adv.
,
3
(
4
), p.
e1602890
.
64.
Khoo
,
Z. X.
,
Teoh
,
J. E. M.
,
Liu
,
Y.
,
Chua
,
C. K.
,
Yang
,
S.
,
An
,
J.
,
Leong
,
K. F.
, and
Yeong
,
W. Y.
,
2015
, “
3D Printing of Smart Materials: A Review on Recent Progresses in 4D Printing
,”
Virtual Phys. Prototyping
,
10
(
3
), pp.
103
122
.
65.
Chae
,
M.
,
Hunter-Smith
,
D.
,
De-Silva
,
I.
,
Tham
,
S.
,
Spychal
,
R.
, and
Rozen
,
W.
,
2015
, “
Four-Dimensional (4D) Printing: A New Evolution in Computed Tomography-Guided Stereolithographic Modeling. Principles and Application
,”
J. Reconstr. Microsurg.
,
31
(
6
), pp.
458
463
.
66.
Ge
,
Q.
,
Dunn
,
C.
,
Qi
,
H.
, and
Dunn
,
M.
,
2014
, “
Active Origami by 4D Printing
,”
Smart Mater. Struct.
,
23
(
9
), p.
094007
.
67.
Sidorenko
,
A.
,
Krupenkin
,
T.
,
Taylor
,
A.
,
Fratzl
,
P.
, and
Aizenberg
,
J.
,
2007
, “
Reversible Switching of Hydrogel-Actuated Nanostructures Into Complex Micropatterns
,”
Science
,
315
(
5811
), pp.
487
490
.
68.
Deng
,
D.
,
Yang
,
Y.
,
Chen
,
Y.
,
Lan
,
X.
, and
Tice
,
J.
,
2017
, “
Accurately Controlled Sequential Self-Folding Structures by Polystyrene Film
,”
Smart Mater. Struct.
,
26
(
8
), p.
085040
.https://orcid.org/0000-0001-9920-2507
69.
Yang
,
H.
,
Leow
,
W.
,
Wang
,
T.
,
Wang
,
J.
,
Yu
,
J.
,
He
,
K.
,
Qi
,
D.
,
Wan
,
C.
, and
Chen
,
X.
,
2017
, “
3D Printed Photoresponsive Devices Based on Shape Memory Composites
,”
Adv. Mater.
,
29
(
33
), p.
1701627
.
70.
Liu
,
Y.
,
Shaw
,
B.
,
Dickey
,
M.
, and
Genzer
,
J.
,
2017
, “
Sequential Self-Folding of Polymer Sheets
,”
Sci. Adv.
,
3
(
3
), p.
e1601417
.
71.
Armon
,
S.
,
Efrati
,
E.
,
Kupferman
,
R.
, and
Sharon
,
E.
,
2011
, “
Geometry and Mechanics in the Opening of Chiral Seed Pods
,”
Science
,
333
(
6050
), pp.
1726
1730
.
72.
Correa
,
D.
,
Papadopoulou
,
A.
,
Guberan
,
C.
,
Jhaveri
,
N.
,
Reichert
,
S.
,
Menges
,
A.
, and
Tibbits
,
S.
,
2015
, “
3D-Printed Wood: Programming Hygroscopic Material Transformations
,”
3D Printing Addit. Manuf.
,
2
(
3
), pp.
106
116
.
73.
Bargardi
,
F. L.
,
Ferrand
,
H. L.
,
Libanori
,
R.
, and
Studart
,
A.
,
2016
, “
Bio-Inspired Self-Shaping Ceramics
,”
Nat. Commun.
,
7
, p.
13912
.
74.
Erb
,
R. M.
,
Sander
,
J. S.
,
Grisch
,
R.
, and
Studart
,
A.
,
2013
, “
Self-Shaping Composites With Programmable Bioinspired Microstructures
,”
Nat. Commun.
,
4
, p.
1712
.
75.
Kokkinis
,
D.
,
Schaffner
,
M.
, and
Studart
,
A.
,
2015
, “
Multimaterial Magnetically Assisted 3D Printing of Composite Materials
,”
Nat. Commun.
,
6
, p.
8643
.
76.
Huang
,
L.
,
Jiang
,
R.
,
Wu
,
J.
,
Song
,
J.
,
Bai
,
H.
,
Li
,
B.
,
Zhao
,
Q.
, and
Xie
,
T.
,
2017
, “
Ultrafast Digital Printing Toward 4D Shape Changing Materials
,”
Adv. Mater.
,
29
(
7
), p.
1605390
.
77.
Gladman
,
A.
,
Matsumoto
,
E.
,
Nuzzo
,
R.
,
Mahadevan
,
L.
, and
Lewis
,
J.
,
2016
, “
Biomimetic 4D Printing
,”
Nat. Mater.
,
15
(
4
), pp.
413
418
.
78.
Zhang
,
Q.
,
Yan
,
D.
,
Zhang
,
K.
, and
Hu
,
G.
,
2015
, “
Pattern Transformation of Heat-Shrinkable Polymer by Three-Dimensional (3D) Printing Technique
,”
Sci. Rep.
,
5
, p.
8936
.
79.
Muth
,
J. T.
,
Vogt
,
D. M.
,
Truby
,
R. L.
,
Mengüç
,
Y.
, and
Kolesky
,
D. B.
,
2014
, “
Embedded 3D Printing of Strain Sensors Within Highly Stretchable Elastomers
,”
Adv. Mater.
,
26
(
36
), pp.
6307
6312
.
80.
Chizari
,
K.
,
Daoud
,
M.
,
Ravindran
,
A.
, and
Therriault
,
D.
,
2016
, “
3D Printing of Highly Conductive Nanocomposites for the Functional Optimization of Liquid Sensors
,”
Small
,
12
(
44
), pp.
6076
6082
.
81.
Frutiger
,
A.
,
Muth
,
J.
,
Vogt
,
D.
,
Menguc
,
Y.
,
Campo
,
A.
,
Valentine
,
A.
,
Walsh
,
C.
, and
Lewis
,
J.
,
2015
, “
Capacitive Soft Strain Sensors Via Multicore–Shell Fiber Printing
,”
Adv. Mater.
,
27
(
15
), pp.
2440
2446
.
82.
Kim
,
K.
,
Park
,
J.
,
Suh
,
J.-H.
,
Kim
,
M.
,
Jeong
,
Y.
, and
Park
,
I.
,
2017
, “
3D Printing of Multiaxial Force Sensors Using Carbon Nanotube (CNT)/Thermoplastic Polyurethane (TPU) Filaments
,”
Sens. Actuators A: Phys.
,
263
, pp.
493
500
.
83.
Lei
,
Z.
,
Wang
,
Q.
, and
Wu
,
P.
,
2017
, “
A Multifunctional Skin-Like Sensor Based on a 3D Printed Thermo-Responsive Hydrogel
,”
Mater. Horiz.
,
4
, pp.
694
700
.
84.
Yang
,
Y.
,
Chen
,
Z.
,
Song
,
X.
,
Zhu
,
B.
,
Hsiai
,
T.
,
Wu
,
P.-I.
,
Xiong
,
R.
,
Shi
,
J.
, and
Chen
,
Y.
,
2016
, “
Three Dimensional Printing of High Dielectric Capacitor Using Projection Based Stereolithography Method
,”
Nano Energy
,
22
, pp.
414
421
.
85.
Chen
,
Z.
,
Song
,
X.
,
Lei
,
L.
,
Chen
,
X.
,
Fei
,
C.
,
Chiu
,
C.
,
Qian
,
X.
,
Ma
,
T.
,
Yang
,
Y.
, and
Shung
,
K.
,
2016
, “
3D Printing of Piezoelectric Element for Energy Focusing and Ultrasonic Sensing
,”
Nano Energy
,
27
, pp.
78
86
.
86.
Lv
,
J.
,
Gong
,
Z.
,
He
,
Z.
,
Yang
,
J.
,
Chen
,
Y.
,
Tang
,
C.
,
Liu
,
Y.
,
Fan
,
M.
, and
Lau
,
W.-M.
,
2017
, “
3D Printing of a Mechanically Durable Superhydrophobic Porous Membrane for Oil–Water Separation
,”
J. Mater. Chem. A
,
5
(
24
), pp.
12435
12444
.
87.
Guo
,
S.-Z.
,
Qiu
,
K.
,
Meng
,
F.
,
Park
,
S.
, and
McApine
,
M.
,
2017
, “
3D Printed Stretchable Tactile Sensors
,”
Adv. Mater.
,
29
(
27
), p.
1701218
.
88.
Darabi
,
M.
,
Khosrozadeh
,
A.
,
Mbeleck
,
R.
,
Liu
,
Y.
,
Chang
,
Q.
,
Jiang
,
J.
,
Cai
,
J.
,
Wang
,
Q.
,
Luo
,
G.
, and
Xing
,
M.
,
2017
, “
Skin‐Inspired Multifunctional Autonomic‐Intrinsic Conductive Self‐Healing Hydrogels With Pressure Sensitivity, Stretchability, and 3D Printability
,”
Adv. Mater.
,
29
(
31
), p.
1700533
.
89.
Yao
,
Y.
,
Fu
,
K.
,
Yan
,
C.
,
Dai
,
J.
,
Chen
,
Y.
,
Wang
,
Y.
,
Zhang
,
B.
,
Hitz
,
E.
, and
Hu
,
L.
,
2016
, “
Three-Dimensional Printable High-Temperature and High-Rate Heaters
,”
ACS Nano
,
10
(
5
), pp.
5272
5279
.
90.
Liu
,
X.
,
Yuk
,
H.
,
Lin
,
S.
,
Parada
,
G.
,
Tang
,
T.-C.
,
Tham
,
E.
,
Fuente-Nunez
,
C.
,
Lu
,
T.
, and
Zhao
,
X.
,
2018
, “
3D Printing of Living Responsive Materials and Devices
,”
Adv. Mater.
,
30
(
4
), p.
1704821
.
91.
Shin
,
S.
,
Farzad
,
R.
,
Tamayol
,
A.
,
Manoharan
,
V.
,
Mostafalu
,
P.
,
Zhang
,
Y.
,
Akbari
,
M.
,
Jung
,
S.
,
Kim
,
D.
,
Comotto
,
M.
,
Annabi
,
N.
,
Al‐Hazmi
,
F.
,
Dokmeci
,
M.
, and
Khademhosseini
,
A.
,
2016
, “
A Bioactive Carbon Nanotube‐Based Ink for Printing 2D and 3D Flexible Electronics
,”
Adv. Mater.
,
28
(
17
), pp.
3280
3289
.
92.
Jakus
,
A.
,
Secor
,
E.
,
Rutz
,
A.
,
Jordan
,
S.
,
Hersam
,
M.
, and
Shah
,
R.
,
2015
, “
Three-Dimensional Printing of High-Content Graphene Scaffolds for Electronic and Biomedical Applications
,”
ACS Nano
,
9
(
4
), pp.
4636
4648
.
93.
Valentine
,
A. D.
,
Busbee
,
T.
,
Boley
,
J.
,
Raney
,
J.
,
Chortos
,
A.
,
Kotikian
,
A.
,
Berrigan
,
J.
, and
Durstock
,
M.
,
2017
, “
Hybrid 3D Printing of Soft Electronics
,”
Adv. Mater.
,
29
(
40
), p.
1703817
.
94.
Brochu
,
T.
, and
Schmidt
,
R.
,
2017
, “
Geometric Modeling of Multi-Material Printed Objects
,” Eurographics Association Conference, Carmel-by-the-Sea, CA, Apr. 13–15.
95.
Al-Ketan
,
O.
,
Al-Rub
,
R. K. A.
, and
Rowshan
,
R.
,
2017
, “
Mechanical Properties of a New Type of Architected Interpenetrating Phase Composite Materials
,”
Adv. Mater. Technol.
,
2
(
2
), p.
1600235
.
96.
Garland
,
A.
, and
Fadel
,
G.
,
2015
, “
Design and Manufacturing Functionally Gradient Material Objects With an Off the Shelf Three-Dimensional Printer: Challenges and Solutions
,”
ASME J. Mech. Des.
,
137
(
11
), p.
111407
.
97.
Leung
,
Y.-S.
,
Mao
,
H.
, and
Chen
,
Y.
, “
Approximate Functionally Graded Materials for Multi-Material Additive Manufacturing
,”
ASME
Paper No. DETC2018-86391.
98.
Sigmund
,
O.
, and
Torquato
,
S.
,
1999
, “
Design of Smart Composite Materials Using Topology Optimization
,”
Smart Mater. Struct.
,
8
(
3
), pp.
365
379
.
99.
Malek
,
S.
,
Raney
,
J.
,
Lewis
,
J. A.
, and
Gibson
,
L.
,
2017
, “
Lightweight 3D Cellular Composites Inspired by Balsa
,”
Bioinspiration Biomimetics
,
12
(
2
), p.
026014
.
100.
Quan
,
Z.
,
Wu
,
A.
,
Keefe
,
M.
,
Qin
,
X.
, and
Yu
,
J.
,
2015
, “
Additive Manufacturing of Multi-Directional Preforms for Composites: Opportunities and Challenges
,”
Mater. Todays
,
18
(
9
), pp.
503
512
.
101.
Long
,
K.
,
Yuan
,
P.
,
Xu
,
S.
, and
Xie
,
Y.
,
2018
, “
Concurrent Topological Design of Composite Structures and Materials Containing Multiple Phases of Distinct Poisson's Ratios
,”
Eng. Optim.
,
50
(
4
), pp.
599
614
.
102.
Kapfer
,
S.
,
Hyde
,
S.
,
Mecke
,
K.
,
Arns
,
C. H.
, and
Schröder-Turk
,
G. E.
,
2011
, “
Minimal Surface Scaffold Designs for Tissue Engineering
,”
Biomaterials
,
32
(
29
), pp.
6875
6882
.
103.
Yoo
,
D.-J.
,
2015
, “
New Paradigms in Cellular Material Design and Fabrication
,”
Int. J. Precis. Eng. Manuf.
,
16
(
12
), pp.
2577
2589
.
104.
Yoo
,
D.-J.
, and
Kim
,
K.-H.
,
2015
, “
An Advanced Multi-Morphology Porous Scaffold Design Method Using Volumetric Distance Field and Beta Growth Function
,”
Int. J. Precis. Eng. Manuf.
,
16
(
9
), pp.
2021
2032
.
105.
Afshar
,
M.
,
Anaraki
,
A. P.
,
Montazerian
,
H.
, and
Kadkhodapour
,
J.
,
2016
, “
Additive Manufacturing and Mechanical Characterization of Graded Porosity Scaffolds Designed Based on Triply Periodic Minimal Surface Architectures
,”
J. Mech. Behav. Biomed. Mater.
,
62
, pp.
481
494
.
106.
Wang
,
K.
,
Chang
,
Y.-H.
,
Chen
,
Y.
,
Zhang
,
C.
, and
Wang
,
B.
,
2015
, “
Designable Dual-Material Auxetic Metamaterials Using Three-Dimensional Printing
,”
Mater. Des.
,
67
, pp.
159
164
.
107.
Wang
,
C. C. L.
,
Leung
,
Y.-S.
, and
Chen
,
Y.
,
2010
, “
Solid Modeling of Polyhedral Objects by Layered Depth-Normal Images on the GPU
,”
Comput.-Aided Des.
,
42
(
6
), pp.
535
544
.
108.
Faure
,
A.
,
Michailidis
,
G.
,
Parry
,
G.
,
Vermaak
,
N.
, and
Estevez
,
R.
,
2017
, “
Design of Thermoelastic Multi-Material Structures With Graded Interfaces Using Topology Optimization
,”
Struct. Multidisp. Optim.
,
56
(
4
), pp.
823
837
.
109.
Udupa
,
G.
,
Rao
,
S.
, and
Gangadharan
,
K.
,
2014
, “
Functionally Graded Composite Materials: An Overview
,”
Procedia Mater. Sci.
,
5
, pp.
1291
1299
.
110.
Zhang
,
B.
,
Jaiswal
,
P.
,
Rai
,
R.
, and
Nelaturi
,
S.
,
2016
, “
Additive Manufacturing of Functionally Graded Objects: A Review
,”
ASME
Paper No. DETC2016-60320.
111.
Kou
,
X.
, and
Tan
,
S.
,
2007
, “
Heterogeneous Object Modeling: A Review
,”
Comput.-Aided Des.
,
39
(
4
), pp.
284
301
.
112.
Ramani
,
A.
,
2011
, “
Multi-Material Topology Optimization With Strength Constraints
,”
Struct. Multidiscip. Optim.
,
43
(
5
), pp.
597
615
.
113.
Kou
,
X.
,
Parks
,
G.
, and
Tan
,
S.
,
2012
, “
Optimal Design of Functionally Graded Materials Using a Procedural Model and Particle Swarm Optimization
,”
Comput.-Aided Des.
,
44
(
4
), pp.
300
310
.
114.
Bahraminasab
,
M.
,
Sahari
,
B.
,
Edwards
,
K.
,
Farahmand
,
F.
,
Hong
,
T.
, and
Naghibi
,
H.
,
2013
, “
Material Tailoring of the Femoral Component in a Total Knee Replacement to Reduce the Problem of Aseptic Loosening
,”
Mater. Des.
,
52
, pp.
441
451
.
115.
Mahmoud
,
D.
, and
Elbestawi
,
M. A.
,
2017
, “
Lattice Structures and Functionally Graded Materials Applications in Additive Manufacturing of Orthopedic Implants: A Review
,”
J. Manuf. Mater. Process.
,
1
(
2
), p. 13.
116.
Brunton
,
A.
,
Arikan
,
C. A.
, and
Urban
,
P.
,
2015
, “
Pushing the Limits of 3D Color Printing: Error Diffusion With Translucent Materials
,”
ACM Trans. Graphic
,
35
(
1
), pp. 1–13.
117.
Gu
,
G.
,
Wettermark
,
S.
, and
Buehler
,
M. J.
,
2017
, “
Algorithm-Driven Design of Fracture Resistant Composite Materials Realized Through Additive Manufacturing
,”
Addit. Manuf.
,
17
, pp.
47
54
.
118.
Gu
,
G. X.
,
Chen
,
C.-T.
, and
Buehler
,
M. J.
,
2018
, “
De Novo Composite Design Based on Machine Learning Algorithm
,”
Extreme Mech. Lett.
,
18
, pp.
19
28
.
119.
Bader
,
C.
,
Kolb
,
D.
,
Weaver
,
J. C.
, and
Oxman
,
N.
,
2016
, “
Data-Driven Material Modeling With Functional Advection for 3D Printing of Materially Heterogeeous Objects
,”
3D Printing Addit. Manuf.
,
3
(
2
), pp. 71–79.
120.
Yu
,
H.
,
Cross
,
S.
, and
Schuh
,
C.
,
2017
, “
Mesostructure Optimization in Multi-Material Additive Manufacturing: A Theoretical Perspective
,”
J. Mater. Sci.
,
52
(
8
), pp.
4288
4298
.
121.
Kennedy
,
G.
,
2015
, “
Large-Scale Multi-Material Topology Optimization for Additive Manufacturing
,”
AIAA
Paper No. AIAA 2015-1799.
122.
Wang
,
C. C. L.
,
2011
, “
Computing on Rays: A Parallel Approach for Surface Mesh Modeling From Multi-Material Volumetric Data
,”
Comput. Ind.
,
62
(
7
), pp.
660
671
.
123.
Panchal
,
J.
,
Kalidindi
,
S.
, and
McDowell
,
D.
,
2013
, “
Key Computational Modeling Issues in Integrated Computational Materials Engineering
,”
Comput.-Aided Des.
,
45
(
1
), pp.
4
25
.
124.
Gibson
,
L.
,
Ashby
,
M.
, and
Harley
,
B.
,
2010
,
Cellular Materials in Nature and Medicine
,
Cambridge University Press
,
Cambridge, UK
.
125.
Zhou
,
S.
, and
Li
,
Q.
,
2008
, “
Design of Graded Two-Phase Microstructures for Tailored Elasticity Gradients
,”
J. Mater. Sci.
,
43
(
15
), p.
5157
.
126.
Allaire
,
G.
,
2002
,
Shape Optimization by the Homogenization Method
,
Springer Science & Business Media
, Berlin.
127.
Huang
,
X.
,
Radman
,
A.
, and
Xie
,
Y.
,
2011
, “
Topological Design of Microstructures of Cellular Materials for Maximum Bulk or Shear Modulus
,”
Comput. Mater. Sci.
,
50
(
6
), pp.
1861
1870
.
128.
Ashby
,
M.
,
1991
, “
Materials and Shape
,”
Acta Metall. Mater.
,
39
(
6
), pp.
1025
1039
.
129.
Vlasea
,
M.
,
Shanjani
,
Y.
,
Bothe
,
A.
,
Kandel
,
R.
, and
Toyserkani
,
E.
,
2013
, “
A Combined Additive Manufacturing and Micro-Syringe Deposition Technique for Realization of Bio-Ceramic Structures With Micro-Scale Channels
,”
Int. J. Adv. Manuf. Technol.
,
68
(
9–12
), pp.
2261
2269
.
130.
Song
,
X.
,
Zhang
,
Z.
,
Chen
,
Z.
, and
Chen
,
Y.
,
2016
, “
Porous Structure Fabrication Using a Stereolithography-Based Sugar Foaming Method
,”
ASME J. Manuf. Sci. Eng.
,
139
(
3
), p.
031015
.
131.
Wang
,
Y.
,
2010
, “
3D Fractals From Periodic Surfaces
,”
ASME
Paper No. DETC2010-29081.
132.
Quinsat
,
Y.
,
Lartigue
,
C.
,
Brown
,
C.
, and
Hattali
,
L.
,
2017
, “
Multi-Scale Surface Characterization in Additive Manufacturing Using CT
,”
Advances on Mechanics, Design Engineering and Manufacturing
,
Springer
, Cham, Switzerland, pp.
271
280
.
133.
Martinez
,
J.
,
Dumas
,
J.
, and
Lefebvre
,
S.
,
2016
, “
Procedural Voronoi Foams for Additive Manufacturing
,”
ACM Trans. Graphics
,
35
(
4
), pp.
1
12
.
134.
Martinez
,
J.
,
Song
,
H.
,
Dumas
,
J.
, and
Lefebvre
,
S.
,
2017
, “
Orthotropic K-Nearest Foams for Additive Manufacturing
,”
ACM Trans. Graphics
,
36
(
4
), pp.
1
12
.
135.
Bendsoe
,
M. P.
,
1988
, “
Generating Optimal Topologies in Structural Design Using a Homogenization Method
,”
Comput. Methods Appl. Mech. Eng.
,
71
(
2
), pp.
197
224
.
136.
Bendsoe
,
M. P.
, and
Sigmund
,
O.
,
2003
,
Topology Optimization: Theory, Methods, and Applications
,
Springer Science & Business Media
, Berlin.
137.
Li
,
B.-T.
,
Yan
,
S.-N.
, and
Hong
,
J.
,
2016
, “
A Growth-Based Topology Optimizer for Stiffness Design of Continuum Structures Under Harmonic Force Excitation
,”
J. Zhejiang Univ. - Sci. A
,
17
(
12
), pp.
933
946
.
138.
Wu
,
C.-Y.
, and
Tseng
,
K.-Y.
,
2010
, “
Topology Optimization of Structures Using Modified Binary Differential Evolution
,”
Struct. Multidiscip. Optim.
,
42
(
6
), pp.
939
953
.
139.
Sethian
,
J.
, and
Wiegmann
,
A.
,
2015
, “
Structural Boundary Design Via Level Set and Immersed Interface Methods
,”
J. Comput. Phys.
,
163
(
2
), pp.
489
528
.
140.
Vogiatzis
,
P.
,
Chen
,
S.
, and
Zhou
,
C.
,
2017
, “
An Open Source Framework for Integrated Additive Manufacturing and Level-Set-Based Topology Optimization
,”
ASME J. Comput. Inf. Sci. Eng.
,
17
(
4
), p.
041012
.
141.
Habib
,
R.
,
Grossman
,
T.
,
Cheong
,
H.
,
Hashemi
,
A.
, and
Fitzmaurice
,
G.
,
2017
, “
DreamSketch: Early Stage 3D Design Explorations With Sketching and Generative Design
,”
ACM Symposium on User Interface Software and Technology
, Quebec City, QC, Canada, 14 pages.
142.
Systèmes
,
D.
,
2018
, “
Solidworks
,” Dassault Systèmes, Vélizy-Villacoublay, France.
143.
Altair
,
2018
, “
SolidThinking Inspired
,” Altair, Troy, MI, accessed Aug. 12, 2018, https://www.solidthinking.com/inspire2018.html
144.
Dorn
,
W. S.
,
Gomory
,
R. E.
, and
Greenberg
,
H. J.
,
1964
, “
Automatic Design of Optimal Structures
,”
J. de Mec.
,
3
, pp.
25
52
.
145.
Chan
,
A.
,
1960
,
The Design of Michell Optimum Structures
,
Cranfield College of Aeronautics
,
Cranfield, UK
.
146.
Hemp
,
W.
,
1964
, “
Studies in the Theory of Michell Structures
,”
Applied Mechanics
, Springer, Berlin.
147.
Hemp
,
W. S.
,
1973
,
Optimum Structures
,
Clarendon Press
,
Oxford, UK
.
148.
Hemp
,
W. S.
, and
Chan
,
H. S. Y.
,
1970
, “
Optimum Design of Pin-Jointed Frameworks
,” Aeronautical Research Council Reports, Her Majesty's Stationery Office, London, Memorandum No. 3632.
149.
Gilbert
,
M.
, and
Tyas
,
A.
,
2003
, “
Layout Optimization of Large‐Scale Pin‐Jointed Frames
,”
Eng. Comput.
,
20
(
8
), pp.
1044
1064
.
150.
Sokół
,
T.
,
2011
, “
Topology Optimization of Large-Scale Trusses Using Ground Structure Approach With Selective Subsets of Active Bars
,”
19th International Conference on Computer Methods in Mechanics
(
CMM
), Warsaw, Poland, May 9–12.http://cmm.il.pw.edu.pl/cd/pdf/236.pdf
151.
Sokół
,
T.
,
2011
, “
A 99 Line Code for Discretized Michell Truss Optimization Written in Mathematica
,”
Struct. Multidiscip. Optim.
,
43
(
2
), pp.
181
190
.
152.
Wu
,
J.
,
Aage
,
N.
,
Westermann
,
R.
, and
Sigmund
,
O.
,
2018
, “
Infill Optimization for Additive Manufacturing—Approaching Bone-Like Porous Structures
,”
IEEE Trans. Vis. Comput. Graph.
,
24
(
2
), pp.
1127
1140
.
153.
Kwok
,
T.-H.
,
Li
,
Y.
, and
Chen
,
Y.
,
2018
, “
A Structural Topology Design Method Based on Principal Stress Line
,”
Comput.-Aided Des.
,
80
, pp.
19
31
.
154.
Wu
,
J.
,
Wang
,
C. C. L.
,
Zhang
,
X.
, and
Westermann
,
R.
,
2016
, “
Self-Supporting Rhombic Infill Structures for Additive Manufacturing
,”
Comput.-Aided Des.
,
80
, pp.
32
42
.
155.
Rosen
,
D.
,
2007
, “
Computer-Aided Design for Additive Manufacturing of Cellular Structures
,”
Comput.-Aided Des. Appl.
,
4
(
5
), pp.
585
594
.
156.
,
A.
,
Mello
,
V.
,
Echavarria
,
K.
, and
Covill
,
D.
,
2015
, “
Adaptive Voids: Primal and Dual Adaptive Cellular Structures for Additive Manufacturing
,”
Visual Comput.
,
31
(
6
), pp.
799
808
.
157.
Qi
,
C.
, and
Wang
,
Y.
,
2009
, “
Feature-Based Crystal Construction in Computer-Aided Nano-Design
,”
Comput.-Aided Des.
,
41
(
11
), pp.
792
800
.
158.
Xiao
,
F.
, and
Yin
,
X.
,
2016
, “
Geometry Models of Porous Media Based on Voronoi Tessellations and Their Porosity–Permeability Relations
,”
Comput. Math. Appl.
,
72
(
2
), pp.
328
348
.
159.
Dong
,
G.
,
Tang
,
Y.
, and
Zhao
,
Y.
,
2017
, “
A Survey of Modeling of Lattice Structures Fabricated by Additive Manufacturing
,”
ASME J. Mech. Des.
,
139
(
10
), p.
100906
.
160.
Dong
,
G.
,
Tang
,
Y.
, and
Zhao
,
Y. F.
,
2017
, “
Simulation of Elastic Properties of Solid-Lattice Hybrid Structures Fabricated by Additive Manufacturing
,”
Procedia Manuf.
,
10
, pp.
760
770
.
161.
Tang
,
Y.
,
Dong
,
G.
,
Zhou
,
Q.
, and
Zhao
,
Y. F.
,
2017
, “
Lattice Structure Design and Optimization With Additive Manufacturing Constraints
,”
IEEE Trans. Autom. Sci. Eng.
,
PP
(
99
), pp.
1
17
.
162.
Sigmund
,
O.
,
1995
, “
Tailoring Materials With Prescribed Elastic Properties
,”
Mech. Mater.
,
20
(
4
), pp.
351
368
.
163.
Bickel
,
B.
,
Bacher
,
M.
,
Otaduy
,
M.
,
Lee
,
H. R.
,
Pfister
,
H.
,
Gross
,
M.
, and
Matusik
,
W.
,
2010
, “
Design and Fabrication of Materials With Desired Deformation Behavior
,”
ACM Trans. Graph.
,
29
(
4
), pp.
63:1
63:10
.
164.
Schumacher
,
C.
,
Bickel
,
B.
,
Rys
,
J.
,
Marschner
,
S.
,
Daraio
,
C.
, and
Gross
,
M.
,
2015
, “
Microstructures to Control Elasticity in 3D Printing
,”
ACM Trans. Graph.
,
34
, pp.
136:1
136:13
.
165.
Panetta
,
J.
,
Zhou
,
Q.
,
Malomo
,
L.
,
Pietroni
,
N.
,
Cignoni
,
P.
, and
Zorin
,
D.
,
2015
, “
Elastic Textures for Additive Fabrication
,”
ACM Trans. Graph.
,
34
, pp.
135:1
135:12
.
166.
Zhang
,
P.
,
Toman
,
J.
,
Yu
,
Y.
,
Biyikli
,
E.
,
Kirca
,
M.
,
Chmielus
,
M.
, and
To
,
A.
,
2015
, “
Efficient Design-Optimization of Variable-Density Hexagonal Cellular Structure by Additive Manufacturing: Theory and Validation
,”
ASME J. Manuf. Sci. Eng.
,
137
(
2
), p.
021004
.
167.
Zhu
,
B.
,
Skouras
,
M.
,
Chen
,
D.
, and
Matusik
,
W.
,
2017
, “
Two-Scale Topology Optimization With Microstructures
,”
ACM Trans. Graph.
,
36
(
4
), p.
164
.
168.
Wang
,
Y.
,
2007
, “
Periodic Surface Modeling for Computer Aided Nano Design
,”
Comput.-Aided Des.
,
39
(
3
), pp.
179
189
.
169.
Yoo
,
D.-J.
,
2011
, “
Porous Scaffold Design Using the Distance Field and Triply Periodic Minimal Surface Models
,”
Biomaterials
,
32
(
31
), pp.
7741
7754
.
170.
Yoo
,
D.-J.
,
2013
, “
New Paradigms in Hierarchical Porous Scaffold Design for Tissue Engineering
,”
Mater. Sci. Eng. C
,
33
(
3
), pp.
1759
1772
.
171.
Yoo
,
D.-J.
,
2014
, “
Advanced Projection Image Generation Algorithm for Fabrication of a Tissue Scaffold Using Volumetric Distance Field
,”
Int. J. Precis. Eng. Manuf.
,
15
(
10
), pp.
2117
2126
.
172.
Huang
,
P.
,
Wang
,
C. C. L.
, and
Chen
,
Y.
,
2014
, “
Algorithms for Layered Manufacturing in Image Space
,” Advances in Computers and Information in Engineering Research, Vol. 1, American Society of Mechanical Engineers, New York.
173.
Schröder-Turk
,
G. E.
,
Mickel
,
W.
,
Kapfer
,
S. C.
,
Klatt
,
M. A.
,
Schaller
,
F. M.
,
Hoffmann
,
M. J. F.
,
Kleppmann
,
N.
,
Armstrong
,
P.
,
Inayat
,
A.
,
Hug
,
D.
,
Reichelsdorfer
,
M.
,
Peukert
,
W.
,
Schwieger
,
W.
, and
Mecke
,
K.
,
2011
, “
Minkowski Tensor Shape Analysis of Cellular, Granular and Porous Structures
,”
Adv. Mater.
,
23
(
22–23
), pp.
2535
2553
.
174.
Wang
,
Y.
, and
Rosen
,
D.
,
2010
, “
Multiscale Heterogeneous Modeling With Surfacelets
,”
Comput.-Aided Des. Appl.
,
7
(
5
), pp.
759
776
.
175.
Huang
,
W.
,
Wang
,
Y.
, and
Rosen
,
D. W.
,
2017
, “
A Multiscale Materials Modeling Method With Seamless Zooming Capability Based on Surfacelets
,”
ASME J. Comput. Inf. Sci. Eng.
,
17
(
2
), p.
021007
.
176.
Huang
,
W.
,
Wang
,
Y.
, and
Rosen
,
D. W.
,
2014
, “
Inverse Surfacelet Transform for Image Reconstruction With Constrained-Conjugate Gradient Methods
,”
ASME J. Comput. Inf. Sci. Eng.
,
14
(
2
), p.
021005
.
177.
Fast
,
T.
, and
Kalidindi
,
S. R.
,
2011
, “
Formulation and Calibration of Higher-Order Elastic Localization Relationships Using the MKS Approach
,”
Acta Mater.
,
59
(
11
), pp.
4595
4605
.
178.
Baniassadi
,
M.
,
Garmestani
,
H.
,
Li
,
D.
,
Ahzi
,
S.
,
Khaleel
,
M.
, and
Sun
,
X.
,
2011
, “
Three-Phase Solid Oxide Fuel Cell Anode Microstructure Realization Using Two-Point Correlation Functions
,”
Acta Mater.
,
59
(
1
), pp.
30
43
.
179.
Baniassadi
,
M.
,
Ahzi
,
S.
,
Garmestani
,
H.
,
Ruch
,
D.
, and
Remond
,
Y.
,
2012
, “
New Approximate Solution for N-Point Correlation Functions for Heterogeneous Materials
,”
J. Mech. Phys. Solids
,
60
(
1
), pp.
104
119
.
180.
Xu
,
H.
,
Dikin
,
D.
,
Burkhart
,
C.
, and
Chen
,
W.
,
2014
, “
Descriptor-Based Methodology for Statistical Characterization and 3D Reconstruction of Microstructural Materials
,”
Comput. Mater. Sci.
,
85
(
1
), pp.
206
216
.
181.
Gupta
,
A.
,
Cecen
,
A.
,
Goyal
,
S.
,
Singh
,
A.
, and
Kalidindi
,
S.
,
2015
, “
Structure–Property Linkages Using a Data Science Approach: Application to a Non-Metallic Inclusion/Steel Composite System
,”
Acta Mater.
,
91
(
1
), pp.
239
254
.
182.
Huang
,
W.
,
Didari
,
S.
,
Wang
,
Y.
, and
Harris
,
T.
,
2015
, “
Generalized Periodic Surface Model and Its Application in Designing Fibrous Porous Media
,”
Eng. Comput.
,
32
(
1
), pp.
7
36
.
183.
Hansmeyer
,
M.
,
2013
, “
Digital Grotesque
,” Zurich, Switzerland, accessed Aug. 12, 2018, http://www.michael-hansmeyer.com/digital-grotesque-I
184.
Lohan
,
D.
,
Dede
,
E.
, and
Allison
,
J.
,
2017
, “
Topology Optimization for Heat Conduction Using Generative Design Algorithms
,”
Struct. Multidisp. Optim.
,
55
(
3
), pp.
1063
1077
.
185.
Wang
,
J.
,
Bai
,
G.
, and
Kong
,
X.
,
2017
, “
Single-Loop Foldable 8R Mechanisms With Multiple Modes
,”
New Trends in Mechanism and Machine Science
,
Springer
,
Cham, Switzerland
, pp.
503
510
.
186.
Rhoads
,
B. P.
, and
Su
,
H.-J.
,
2016
, “
The Design and Fabrication of a Deformable Origami Wheel
,”
ASME
Paper No. DETC2016-60045.
187.
Belcastro
,
S.-M.
, and
Hull
,
T. C.
,
2002
, “
Modelling the Folding of Paper Into Three Dimensions Using Affine Transformations
,”
Linear Algebra Appl.
,
348
(
1–3
), pp.
273
282
.
188.
Schenk
,
M.
, and
Guest
,
S. D.
,
2011
, “
Origami Folding: A Structural Engineering Approach
,”
Origami 5: Fifth International Meeting of Origami Science, Mathematics, and Education
, New York, Singapore, July 13–17.http://www2.eng.cam.ac.uk/~sdg/preprint/5OSME.pdf
189.
Tachi
,
T.
,
2013
, “
Interactive Form-Finding of Elastic Origami
,”
International Association for Shell and Spatial Structures (IASS) Symposium
, Wroclaw, Poland, Sept. 23–27.
190.
Tachi
,
T.
,
2010
, “
Freeform Rigid-Foldable Structure Using Bidirectionally Flat-Foldable Planar Quadrilateral Mesh
,”
Advances in Architectural Geometry
,
Springer
,
Vienna, Austria
, pp.
87
102
.
191.
Zhu
,
L.
,
Igarashi
,
T.
, and
Mitani
,
J.
,
2013
, “
Soft Folding
,”
Comput. Graph. Forum
,
32
(
7
), pp.
167
176
.
192.
Morgan
,
J.
,
Magleby
,
S.
, and
Howell
,
L.
,
2016
, “
An Approach to Designing Origami-Adapted Aerospace Mechanisms
,”
ASME J. Mech. Des.
,
138
(
5
), p.
052301
.
193.
Killian
,
M.
,
Flory
,
S.
,
Chen
,
Z.
,
Mitra
,
N.
,
Sheffer
,
A.
, and
Pottmann
,
H.
,
2008
, “
Curved Folding
,” ACM Siggraph, Los Angeles, CA, Aug. 11–15.
194.
Kilian
,
M.
,
Monszpart
,
A.
, and
Mitra
,
N.
,
2017
, “
String Actuated Curved Folded Surfaces
,”
ACM Trans. Graph.
,
36
(
4
), p. 25.
195.
Wang
,
C. C. L.
,
2008
, “
Towards Flattenable Mesh Surfaces
,”
Comput.-Aided Des.
,
40
(
1
), pp.
109
122
.
196.
Fang
,
G.
,
Matte
,
C.-D.
,
Kwok
,
T.-H.
, and
Wang
,
C. C. L.
,
2018
, “
Geometry-Based Direct Simulation for Multi-Material Soft Robots
,”
IEEE International Conference on Robotics and Automation
(
ICRA
), Brisbane, Australia, May 21–25.
197.
Cohrs
,
N. H.
,
Petrou
,
A.
,
Loepfe
,
M.
,
Yliruka
,
M.
,
Schumacher
,
C. M.
,
Kohll
,
A. X.
,
Starck
,
C. T.
,
Schmid Daners
,
M.
,
Meboldt
,
M.
,
Falk
,
V.
, and
Stark
,
W. J.
,
2017
, “
A Soft Total Artificial Heart—First Concept Evaluation on a Hybrid Mock Circulation
,”
Artif. Organs
,
41
(
10
), pp.
948
958
.
198.
Rus
,
D.
, and
Tolley
,
M.
,
2015
, “
Design, Fabrication and Control of Soft Robots
,”
Nature
,
521
(
7553
), pp.
467
475
.
199.
Connolly
,
F.
,
Walsh
,
C.
, and
Bertoldi
,
K.
,
2017
, “
Automatic Design of Fiber-Reinforced Soft Actuators for Trajectory Matching
,”
Proc. Natl. Acad. Sci.
,
114
(
1
), pp.
51
56
.
200.
Becker
,
M.
, and
Teschner
,
M.
,
2007
, “
Robust and Efficient Estimation of Elasticity Parameters Using the Linear Finite Element Method
,”
Simulation Und Visualisierung
, Magdeburg, Germany, Mar. 8–9
201.
Bickel
,
B.
,
Bacher
,
M.
,
Otaduy
,
M.
,
Matusik
,
W.
,
Pfister
,
H.
, and
Gross
,
M.
,
2009
, “
Capture and Modeling of Non-Linear Heterogeneous Soft Tissue
,”
ACM Trans. Graph.
,
28
(
3
), p.
89
.
202.
Xu
,
H.
,
Li
,
Y.
,
Chen
,
Y.
, and
Barbic
,
J.
,
2015
, “
Interactive Material Design Using Model Reduction
,”
ACM Trans. Graph.
,
34
(
2
), p.
18
.
203.
Zhang
,
X.
,
Le
,
X.
,
Wu
,
Z.
,
Whiting
,
E.
, and
Wang
,
C. C. L.
,
2016
, “
Data-Driven Bending Elasticity Design by Shell Thickness
,”
Comput. Graph. Forum
,
35
(
5
), pp.
157
166
.
204.
Skouras
,
M.
,
Thomaszewski
,
B.
,
Coros
,
S.
,
Bickel
,
B.
, and
Gross
,
M.
,
2013
, “
Computational Design of Actuated Deformable Characters
,”
ACM Trans. Graph.
,
32
(
4
), p.
82
.
205.
Kharevych
,
L.
,
Mullen
,
P.
,
Owhadi
,
H.
, and
Desbrun
,
M.
,
2009
, “
Numerical Coarsening of Inhomogeneous Elastic Materials
,”
ACM Trans. Graph.
,
28
(
3
), pp.
51:1
51:8
.
206.
Chen
,
D.
,
Levin
,
D.
,
Sueda
,
S.
, and
Matusik
,
W.
,
2015
, “
Data-Driven Finite Elements for Geometry and Material Design
,”
ACM Trans. Graph.
,
34
(
4
), pp.
74:1
10
.
207.
Yap
,
H. K.
,
Ng
,
H. Y.
, and
Yeow
,
R. C.-H.
,
2016
, “
High-Force Soft Printable Pneumatics for Soft Robotic Applications
,”
Soft Rob.
,
3
(
3
), pp.
144
158
.
208.
Lipson
,
J. H. A. H.
,
2014
, “
Dynamic Simulation of Soft Multimaterial 3D-Printed Objects
,”
Soft Rob.
,
1
(
1
), pp.
88
101
.
209.
Cheney
,
N.
,
MacCurdy
,
R.
,
Clune
,
J.
, and
Lipson
,
H.
,
2013
, “
Unshackling Evolution: Evolving Soft Robots With Multiple Materials and a Powerful Generative Encoding
,”
15th Annual Conference on Genetic and Evolutionary Computation
, Amsterdam, The Netherlands, July 6–10, pp. 167–174.
210.
François
,
F.
,
Christian
,
D.
,
Hervé
,
D.
,
Jérémie
,
A.
,
Benjamin
,
G.
,
Stéphanie
,
M.
,
Hugo
,
T.
,
Hadrien
,
C.
,
Guillaume
,
B.
,
Igor
,
P.
, and
Stéphane
,
C.
,
2012
, “
SOFA: A Multi-Model Framework for Interactive Physical Simulation
,”
Soft Tissue Biomechanical Modeling for Computer Assisted Surgery
,
Springer
,
Berlin
, pp.
283
321
.
211.
Duriez
,
C.
,
2013
, “
Control of Elastic Soft Robots Based on Real-Time Finite Element Method
,”
IEEE International Conference on Robotics and Automation
(
ICRA
), Karlsruhe, Germany, May 6–10.
212.
Largilliere
,
F.
,
Verona
,
V.
,
Coevoet
,
E.
,
Sanz-Lopez
,
M.
,
Dequidt
,
J.
, and
Duriez
,
C.
,
2015
, “
Real-Time Control of Soft-Robots Using Asynchronous Finite Element Modeling
,”
IEEE International Conference on Robotics and Automation
(
ICRA
), Seattle, WA, May 26–30.
213.
Duriez
,
C.
,
Coevoet
,
E.
,
Largilliere
,
F.
,
Morales-Bieze
,
T.
,
Zhang
,
Z.
,
Sanz-Lopez
,
M.
,
Carrez
,
B.
,
Marchal
,
D.
,
Goury
,
O.
, and
Dequidt
,
J.
,
2016
, “
Framework for Online Simulation of Soft Robots With Optimization-Based Inverse Model
,”
IEEE International Conference on Simulation, Modeling, and Programming for Autonomous Robots
(
SIMPAR
), San Francisco, CA, Dec. 13–16.
214.
Wang
,
Z.
, and
Hirai
,
S.
,
2017
, “
Soft Gripper Dynamics Using a Line-Segment Model With an Optimization-Based Parameter Identification Method
,”
IEEE Rob. Autom. Lett.
,
2
(
4
), pp.
1909
1916
.
215.
Stanley
,
A. A.
, and
Okamura
,
A. M.
,
2016
, “
Deformable Model-Based Methods for Shape Control of a Haptic Jamming Surface
,”
IEEE Trans. Visualization Comput. Graph.
,
23
(
2
), pp.
1029
1041
.
216.
Zhou
,
L.
,
Su
,
H.-J.
,
Marras
,
A.
,
Huang
,
C.-M.
, and
Castro
,
C.
,
2017
, “
Projection Kinematic Analysis of DNA Origami Mechanisms Based on a Two-Dimensional TEM Image
,”
Mech. Mach. Theory
,
109
, pp.
22
38
.
217.
Tibbits
,
S.
,
2012
, “
Design to Self-Assembly
,”
Archit. Des.
,
82
(
2
), pp.
68
73
.
218.
Choi
,
J.
,
Kwon
,
O.-C.
,
Jo
,
W.
,
Lee
,
H.
, and
Moon
,
M.-W.
,
2015
, “
4D Printing Technology: A Review
,”
3D Printing Addit. Manuf.
,
2
(
4
), pp.
159
167
.
219.
Kwok
,
T.-H.
, and
Chen
,
Y.
,
2017
, “
GDFE: Geometry-Driven Finite Element for Four-Dimensional Printing
,”
ASME J. Manuf. Sci. Eng.
,
139
(
11
), p.
111006
.
220.
MacDonald
,
E.
, and
Wicker
,
R.
,
2016
, “
Multiprocess 3D Printing for Increasing Component Functionality
,”
Science
,
353
(
6307
), p. aaf2093.
221.
Ye
,
J.
,
Chen
,
L.
,
Li
,
X.
,
Yuan
,
Q.
, and
Gao
,
Z.
,
2017
, “
Review of Optical Freeform Surface Representation Technique and Its Application
,”
Opt. Eng.
,
56
(
11
), p. 110901.
222.
Wolfs
,
F.
,
Fess
,
E.
,
Johns
,
D.
,
LePage
,
G.
, and
Matthews
,
G.
,
2017
, “
Computer Aided Manufacturing for Complex Freeform Optics
,”
Proc. SPIE
,
10488
, p.
1044815
.
223.
NASA/JPL-Caltech
,
2017
, “
Space Fabric' Links Fashion and Engineering
,” National Aeronautics and Space Administration, Pasadena, CA.
224.
Felber
,
R.
,
Rudolph
,
N.
, and
Nellis
,
G.
,
2016
, “
Design and Simulation of 3D Printed Air-Cooled Heat Exchangers
,”
Solid Freeform Fabrication
, Austin, TX, Aug. 8–10.https://www.researchgate.net/publication/311411725_Design_and_Simulation_of_3D_Printed_Air-Cooled_Heat_Exchangers
225.
Kitayama
,
S.
,
Miyakawa
,
H.
,
Takano
,
M.
, and
Aiba
,
S.
,
2017
, “
Multi-Objective Optimization of Injection Molding Process Parameters for Short Cycle Time and Warpage Reduction Using Conformal Cooling Channel
,”
Int. J. Adv. Manuf. Technol.
,
88
(
5–8
), pp.
1735
1744
.
226.
Wang
,
Y.
,
Yu
,
K.-M.
,
Wang
,
C.
, and
Zhang
,
Y.
,
2011
, “
Automatic Design of Conformal Cooling Circuit for Rapid Tooling
,”
Comput.-Aided Des.
,
43
(
8
), pp.
1001
1010
.
227.
Wang
,
Y.
,
Yu
,
K.-M.
, and
Wang
,
C.
,
2015
, “
Spiral and Conformal Cooling in Plastic Injection Molding
,”
Comput.-Aided Des.
,
63
, pp.
1
11
.
228.
Zhang
,
X.
,
Fang
,
G.
,
Dai
,
C.
,
Verlinden
,
J.
,
Wu
,
J.
,
Whiting
,
E.
, and
Wang
,
C. C. L.
,
2017
, “
Thermal-Comfort Design of Personalized Casts
,” 30th Annual ACM Symposium on User Interface Software and Technology, Québec City, QC, Canada, Oct. 22–25, pp. 243–254 .
229.
Cheng
,
L.
,
Liu
,
J.
, and
To
,
A.
,
2018
, “
Concurrent Lattice Infill With Feature Evolution Optimization for Additive Manufactured Heat Conduction Design
,”
Struct. Multidiscip. Optim.
,
58
(
2
), pp.
511
535
.
230.
Adams
,
J. J.
,
Duoss
,
E. B.
,
Malkowski
,
T. F.
,
Motala
,
M. J.
,
Ahn
,
B. Y.
,
Nuzzo
,
R. G.
,
Bernhard
,
J. T.
, and
Lewis
,
J. A.
,
2011
, “
Conformal Printing of Electrically Small Antennas on Three-Dimensional Surfaces
,”
Adv. Mater.
,
23
(
11
), pp.
1335
1440
.
231.
Lind
,
J. U.
,
Busbee
,
T. A.
,
Valentine
,
A. D.
,
Pasqualini
,
F. S.
,
Yuan
,
H.
,
Yadid
,
M.
,
Park
,
S.-J.
,
Kotikian
,
A.
,
Nesmith
,
A. P.
,
Campbell
,
P. H.
,
Vlassak
,
J. J.
,
Lewis
,
J. A.
, and
Parker
,
K. K.
,
2016
, “
Instrumented Cardiac Microphysiological Devices Via Multimaterial Three-Dimensional Printing
,”
Nat. Mater.
,
16
(
3
), pp.
303
308
.
232.
Mannoor
,
M. S.
,
Jiang
,
Z.
,
James
,
T.
,
Kong
,
Y. L.
,
Malatesta
,
K. A.
,
Soboyejo
,
W. O.
,
Verma
,
N.
,
Gracias
,
D. H.
, and
McAlpine
,
M. C.
,
2013
, “
3D Printed Bionic Ears
,”
Nano Lett.
,
13
(
6
), pp.
2634
2639
.
233.
Panesar
,
A.
,
Ashcroft
,
I.
,
Brackett
,
D.
,
Wildman
,
R.
, and
Hague
,
R.
,
2017
, “
Design Framework for Multifunctional Additive Manufacturing: Placement and Routing of Three-Dimensional Printed Circuit Volumes
,”
ASME J. Mech. Des.
,
137
(
11
), pp.
98
106
.
234.
Panesar
,
A.
,
Ashcroft
,
I.
,
Brackett
,
D.
,
Wildman
,
R.
, and
Hague
,
R.
,
2017
, “
Design Framework for Multifunctional Additive Manufacturing: Coupled Optimization Strategy for Structures With Embedded Functional Systems
,”
Addit. Manuf.
,
16
, pp.
98
106
.
235.
Festo,
2015
, “
BionicANTs: Cooperative Behaviour Based on Natural Model
,” Festo, Esslingen am Neckar, Germany, accessed Apr. 16, 2018, https://www.festo.com/group/en/cms/10157.htm
236.
Vidimce
,
K.
,
Kaspar
,
A.
,
Wang
,
Y.
, and
Matusik
,
W.
,
2016
, “
Foundry: Hierarchical Material Design for Multi-Material Fabrication
,”
29th Annual Symposium on User Interface Software and Technology
, Tokyo, Japan, Oct. 16–19.
You do not currently have access to this content.