Current methodologies for variation simulation of compliant sheet metal assemblies and parts are simplified by assuming linear relationships. From the observed physical experiments, it is evident that plastic strains are a source of error that is not captured in the conventional variational simulation methods. This paper presents an adaptation toward an elastoplastic material model with isotropic hardening in the method of influence coefficients (MIC) methodology for variation simulations. The results are presented in two case studies using a benchmark case involving a two-dimensional (2D) quarter symmetric plate with a centered hole, subjected to both uniaxial and biaxial displacement. The adaptation shows a great reduction in central processing unit time with limited effect on the accuracy of the results compared to direct Monte Carlo simulations.

References

References
1.
Chase
,
W.
, and
Parkinson
,
A. R.
,
1991
, “
A Survey of Research in the Application of Tolerance Analysis to the Design of Mechanical Assemblies
,”
Res. Eng. Des.
,
3
(
1
), pp.
23
37
.
2.
Söderberg
,
R.
, and
Lindkvist
,
L.
,
1999
, “
Computer Aided Assembly Robustness Evaluation
,”
J. Eng. Des.
,
10
(
2
), pp.
165
181
.
3.
Suh
,
N. P.
,
1990
,
The Principles of Design
,
Oxford University Press
, New York.
4.
Liu
,
S. C.
, and
Hu
,
S. J.
,
1997
, “
Variation Simulation for Deformable Sheet Metal Assemblies Using Finite Element Methods
,”
ASME J. Manuf. Sci. Eng.
,
119
(
3
), pp.
368
374
.
5.
Dahlström
,
S.
, and
Lindkvist
,
L.
,
2007
, “
Variation Simulation of Sheet Metal Assemblies Using the Method of Influence Coefficients With Contact Modeling
,”
ASME J. Manuf. Sci. Eng.
,
129
(
3
), pp.
615
622
.
6.
Söderberg
,
R.
,
Lindkvist
,
L.
,
Wärmefjord
,
K.
, and
Carlson
,
J. S.
,
2016
, “
Virtual Geometry Assurance Process and Toolbox
,”
Procedia CIRP
,
43
, pp.
3
12
.
7.
Moos
,
S.
, and
Vezzetti
,
E.
,
2013
, “
An Integrated Strategy for Variational Analysis of Compliant Plastic Assemblies on Shell Elements
,”
Int. J. Adv. Manuf. Technol.
,
69
(
1–4
), pp.
875
890
.
8.
Söderberg
,
R.
,
Wärmefjord
,
K.
,
Lindkvist
,
L.
, and
Berlin
,
R.
,
2012
, “
The Influence of Spot Weld Position Variation on Geometrical Quality
,”
CIRP Ann. Manuf. Technol.
,
61
(
1
), pp.
13
16
.
9.
Wärmefjord
,
K.
,
Söderberg
,
R.
,
Ericsson
,
M.
,
Appelgren
,
A.
,
Lundbäck
,
A.
,
Lööf
,
J.
,
Lindkvist
,
L.
, and
Svensson
,
H-. O.
,
2016
, “
Welding of Non-Nominal Geometries—Physical Tests
,”
Procedia CIRP
,
43
, pp.
136
141
.
10.
Han
,
W.
,
Daya Reddy
,
B.
, and
Schroeder
,
G. C.
,
1997
, “
Qualitative and Numerical Analysis of Quasi-Static Problems in Elastoplasticity
,”
Soc. Ind. Appl. Math.
,
34
(
1
), pp.
143
177
.
11.
Han
,
W.
, and
Reddy
,
B. D.
,
2013
, “
Plasticity
,”
Interdisciplinary Applied Mathematics
, Vol.
9
,
Springer
,
New York
.
12.
Havner
,
K. S.
, and
Patel
,
H. P.
,
1976
, “
On Convergence of the Finite-Element Method for a Class of Elastic-Plastic Solids
,”
Q. Appl. Math.
,
34
(
1
), pp.
59
68
.
13.
Johnson
,
C.
,
1975
, “
On Finite Element Methods for Plasticity Problems
,”
Numer. Math.
,
26
(
1
), pp.
79
84
.
14.
Simo
,
J. C.
, and
Hughes
,
T. J. R.
,
1998
, “
Computational Inelasticity
,”
Interdisciplinary Applied Mathematics
, Vol.
7
,
Springer
,
New York
.
15.
Jeyakumar
,
V.
,
2008
, “
Nonsmooth Vector Functions and Continuous Optimization
,”
Optimization and Its Applications
, Vol.
10
,
Springer
,
Boston, MA
.
You do not currently have access to this content.