Topology optimization for additive manufacturing has been limited to the design of single-piece components that fit within the printer's build volume. This paper presents a gradient-based multicomponent topology optimization method for structures assembled from components built by powder bed additive manufacturing (MTO-A), which enables the design of multipiece assemblies larger than the printer's build volume. Constraints on component geometry for powder bed additive manufacturing are incorporated in a density-based topology optimization framework, with an additional design field governing the component partitioning. For each component, constraints on the maximum allowable build volume (i.e., length, width, and height) and the elimination of enclosed cavities are imposed during the simultaneous optimization of the overall topology and component partitioning. Numerical results of the minimum compliance designs revealed that manufacturing constraints, previously applied to single-piece topology optimization, can unlock richer design exploration space when applied to multicomponent designs.

References

References
1.
Bendsøe
,
M. P.
, and
Kikuchi
,
N.
,
1988
, “
Generating Optimal Topologies in Structural Design Using a Homogenization Method
,”
Comput. Methods Appl. Mech. Eng.
,
71
(
2
), pp.
197
224
.
2.
Dede
,
E. M.
,
Joshi
,
S. N.
, and
Zhou
,
F.
,
2015
, “
Topology Optimization, Additive Layer Manufacturing, and Experimental Testing of an Air-Cooled Heat Sink
,”
ASME J. Mech. Des.
,
137
(
11
), p.
111403
.
3.
Zegard
,
T.
, and
Paulino
,
G. H.
,
2016
, “
Bridging Topology Optimization and Additive Manufacturing
,”
Struct. Multidiscip. Optim.
,
53
(
1
), pp.
175
192
.
4.
Zhu
,
B.
,
Skouras
,
M.
,
Chen
,
D.
, and
Matusik
,
W.
,
2017
, “
Two-Scale Topology Optimization With Microstructures
,”
ACM Trans. Graph.
,
36
(
4
). p.
164
.
5.
Vogiatzis
,
P.
,
Chen
,
S.
, and
Zhou
,
C.
,
2017
, “
An Open Source Framework for Integrated Additive Manufacturing and Level-Set-Based Topology Optimization
,”
ASME J. Comput. Inf. Sci. Eng.
,
17
(
4
), p.
041012
.
6.
Steuben
,
J. C.
,
Iliopoulos
,
A. P.
, and
Michopoulos
,
J. G.
,
2018
, “
Multiscale Topology Optimization for Additively Manufactured Objects
,”
ASME J. Comput. Inf. Sci. Eng.
,
18
(
3
), p.
031002
.
7.
Luo
,
L.
,
Baran
,
I.
,
Rusinkiewicz
,
S.
, and
Matusik
,
W.
,
2012
, “
Chopper: Partitioning Models Into 3D-Printable Parts
,”
ACM Trans. Graph.
,
31
(
6
), pp.
129:1
129:9
.
8.
Attene
,
M.
,
2015
, “
Shapes in a Box: Disassembling 3D Objects for Efficient Packing and Fabrication
,”
Comput. Graph. Forum
,
34
(
8
), pp.
64
76
.
9.
Turner
,
B. N.
,
Strong
,
R.
, and
Gold
,
S. A.
,
2014
, “
A Review of Melt Extrusion Additive Manufacturing Processes—Part I: Process Design and Modeling
,”
Rapid Prototyping J.
,
20
(
3
), pp.
192
204
.
10.
Liu
,
S.
,
Li
,
Q.
,
Chen
,
W.
,
Tong
,
L.
, and
Cheng
,
G.
,
2015
, “
An Identification Method for Enclosed Voids Restriction in Manufacturability Design for Additive Manufacturing Structures
,”
Front. Mech. Eng.
,
10
(
2
), pp.
126
137
.
11.
Li
,
Q.
,
Chen
,
W.
,
Liu
,
S.
, and
Tong
,
L.
,
2016
, “
Structural Topology Optimization Considering Connectivity Constraint
,”
Struct. Multidiscip. Optim.
,
54
(
4
), pp.
971
984
.
12.
Ambrosio
,
L.
, and
Buttazzo
,
G.
,
1993
, “
An Optimal Design Problem With Perimeter Penalization
,”
Calculus Var. Partial Differ. Equations
,
1
(
1
), pp.
55
69
.
13.
Haber
,
R. B.
,
Jog
,
C. S.
, and
Bendsøe
,
M. P.
,
1996
, “
A New Approach to Variable-Topology Shape Design Using a Constraint on Perimeter
,”
Struct. Multidiscip. Optim.
,
11
(
1–2
), pp.
1
12
.
14.
Petersson
,
J.
, and
Sigmund
,
O.
,
1998
, “
Slope Constrained Topology Optimization
,”
Int. J. Numer. Methods Eng.
,
41
(
8
), pp.
1417
1434
.
15.
Sigmund
,
O.
,
1997
, “
On the Design of Compliant Mechanisms Using Topology Optimization
,”
J. Struct. Mech.
,
25
(
4
), pp.
493
524
.
16.
Bruns
,
T. E.
, and
Tortorelli
,
D. A.
,
2001
, “
Topology Optimization of Non-Linear Elastic Structures and Compliant Mechanisms
,”
Comput. Methods Appl. Mech. Eng.
,
190
(
26–27
), pp.
3443
3459
.
17.
Guest
,
J. K.
,
Prévost
,
J. H.
, and
Belytschko
,
T.
,
2004
, “
Achieving Minimum Length Scale in Topology Optimization Using Nodal Design Variables and Projection Functions
,”
Int. J. Numer. Methods Eng.
,
61
(
2
), pp.
238
254
.
18.
Lazarov
,
B. S.
, and
Sigmund
,
O.
,
2011
, “
Filters in Topology Optimization Based on Helmholtz-Type Differential Equations
,”
Int. J. Numer. Methods Eng.
,
86
(
6
), pp.
765
781
.
19.
Thomsen
,
J.
,
1992
, “
Topology Optimization of Structures Composed of One or Two Materials
,”
Struct. Optim.
,
5
(
1–2
), pp.
108
115
.
20.
Sigmund
,
O.
,
2001
, “
Design of Multiphysics Actuators Using Topology Optimization—Part II: Two-Material Structures
,”
Comput. Methods Appl. Mech. Eng.
,
190
(
49–50
), pp.
6605
6627
.
21.
Stegmann
,
J.
, and
Lund
,
E.
,
2005
, “
Discrete Material Optimization of General Composite Shell Structures
,”
Int. J. Numer. Methods Eng.
,
62
(
14
), pp.
2009
2027
.
22.
Zuo
,
W.
, and
Saitou
,
K.
,
2017
, “
Multi-Material Topology Optimization Using Ordered SIMP Interpolation
,”
Struct. Multidiscip. Optim.
,
55
(
2
), pp.
477
491
.
23.
Lyu
,
N.
, and
Saitou
,
K.
,
2005
, “
Topology Optimization of Multicomponent Beam Structure Via Decomposition-Based Assembly Synthesis
,”
ASME J. Mech. Des.
,
127
(
2
), pp.
170
183
.
24.
Yildiz
,
A. R.
, and
Saitou
,
K.
,
2011
, “
Topology Synthesis of Multicomponent Structural Assemblies in Continuum Domains
,”
ASME J. Mech. Des.
,
133
(
1
), p.
011008
.
25.
Guirguis
,
D.
,
Hamza
,
K.
,
Aly
,
M.
,
Hegazi
,
H.
, and
Saitou
,
K.
,
2015
, “
Multi-Objective Topology Optimization of Multi-Component Continuum Structures Via a Kriging-Interpolated Level Set Approach
,”
Struct. Multidiscip. Optim.
,
51
(
3
), pp.
733
748
.
26.
Rozvany
,
G. I.
,
2009
, “
A Critical Review of Established Methods of Structural Topology Optimization
,”
Struct. Multidiscip. Optim.
,
37
(
3
), pp.
217
237
.
27.
Sigmund
,
O.
,
2011
, “
On the Usefulness of Non-Gradient Approaches in Topology Optimization
,”
Struct. Multidiscip. Optim.
,
43
(
5
), pp.
589
596
.
28.
Zhou
,
Y.
, and
Saitou
,
K.
,
2018
, “
Gradient-Based Multi-Component Topology Optimization for Stamped Sheet Metal Assemblies (MTO-S)
,”
Struct. Multidiscip. Optim.
,
58
(
1
), pp.
83
94
.
29.
Zhou
,
Y.
,
Nomura
,
T.
, and
Saitou
,
K.
,
2018
, “
Multi-Component Topology and Material Orientation Design of Composite Structures (MTO-C)
,”
Comput. Methods Appl. Mech. Eng.
,
342
, pp.
438
457
.
30.
Formlab
,
2016
, “
How to Create Models Larger Than a 3D Printer's Build Volume
,” Formlab, accessed Dec. 15, 2018, https://goo.gl/9mz1Zb
31.
Zhou
,
Y.
, and
Saitou
,
K.
,
2017
, “
Gradient-Based Multi-Component Topology Optimization for Additive Manufacturing (MTO-A)
,”
ASME
Paper No. DETC2017-68207.
32.
Kawamoto
,
A.
,
Matsumori
,
T.
,
Yamasaki
,
S.
,
Nomura
,
T.
,
Kondoh
,
T.
, and
Nishiwaki
,
S.
,
2011
, “
Heaviside Projection Based Topology Optimization by a PDE-Filtered Scalar Function
,”
Struct. Multidiscip. Optim.
,
44
(
1
), pp.
19
24
.
33.
Bendsøe
,
M. P.
, and
Sigmund
,
O.
,
2004
,
Topology Optimization Theory, Methods, and Applications
,
Springer
, Berlin.
34.
O'Rourke
,
J.
,
1985
, “
Finding Minimal Enclosing Boxes
,”
Int. J. Comput. Inf. Sci.
,
14
(
3
), pp.
183
199
.
35.
Barequet
,
G.
, and
Har-Peled
,
S.
,
2001
, “
Efficiently Approximating the Minimum-Volume Bounding Box of a Point Set in Three Dimensions
,”
J. Algorithms
,
38
(
1
), pp.
91
109
.
36.
Chan
,
C.
, and
Tan
,
S.
,
2001
, “
Determination of the Minimum Bounding Box of an Arbitrary Solid: An Iterative Approach
,”
Comput. Struct.
,
79
(
15
), pp.
1433
1449
.
37.
Dimitrov
,
D.
,
Knauer
,
C.
,
Kriegel
,
K.
, and
Rote
,
G.
,
2009
, “
Bounds on the Quality of the PCA Bounding Boxes
,”
Comput. Geom.
,
42
(
8
), pp.
772
789
.
38.
Moon
,
S. J.
, and
Yoon
,
G. H.
,
2013
, “
A Newly Developed qp-Relaxation Method for Element Connectivity Parameterization to Achieve Stress-Based Topology Optimization for Geometrically Nonlinear Structures
,”
Comput. Methods Appl. Mech. Eng.
,
265
, pp.
226
241
.
39.
Svanberg
,
K.
,
1987
, “
The Method of Moving Asymptotes—A New Method for Structural Optimization
,”
Int. J. Numer. Methods Eng.
,
24
(
2
), pp.
359
373
.
40.
Olesen
,
L. H.
,
Okkels
,
F.
, and
Bruus
,
H.
,
2006
, “
A High-Level Programming-Language Implementation of Topology Optimization Applied to Steady-State Navier-Stokes Flow
,”
Int. J. Numer. Methods Eng.
,
65
(
7
), pp.
975
1001
.
41.
Aage
,
N.
,
Andreassen
,
E.
, and
Lazarov
,
B. S.
,
2015
, “
Topology Optimization Using PETSc: An Easy-to-Use, fully Parallel, Open Source Topology Optimization Framework
,”
Struct. Multidiscip. Optim.
,
51
(
3
), pp.
565
572
.
42.
Zhou
,
Y.
,
Nomura
,
T.
, and
Saitou
,
K.
,
2018
, “
Multi-Component Topology Optimization for Powder Bed Additive Manufacturing (MTO-A)
,”
ASME
Paper No. DETC2018-86284.
43.
Brackett
,
D.
,
Ashcroft
,
I.
, and
Hague
,
R.
,
2011
, “
Topology Optimization for Additive Manufacturing
,”
Solid Freeform Fabrication Symposium
, Austin, TX, Aug. 8–10, pp.
348
362
.
44.
Gaynor
,
A. T.
, and
Guest
,
J. K.
,
2016
, “
Topology Optimization Considering Overhang Constraints: Eliminating Sacrificial Support Material in Additive Manufacturing Through Design
,”
Struct. Multidiscip. Optim.
,
54
(
5
), pp.
1157
1172
.
45.
Mirzendehdel
,
A. M.
, and
Suresh
,
K.
,
2016
, “
Support Structure Constrained Topology Optimization for Additive Manufacturing
,”
Comput.-Aided Des.
,
81
, pp.
1
13
.
46.
Qian
,
X.
,
2017
, “
Undercut and Overhang Angle Control in Topology Optimization: A Density Gradient Based Integral Approach
,”
Int. J. Numer. Methods Eng.
,
111
(
3
), pp.
247
272
.
47.
Langelaar
,
M.
,
2017
, “
An Additive Manufacturing Filter for Topology Optimization of Print-Ready Designs
,”
Struct. Multidiscip. Optim.
,
55
(
3
), pp.
871
883
.
48.
Guo
,
X.
,
Zhou
,
J.
,
Zhang
,
W.
,
Du
,
Z.
,
Liu
,
C.
, and
Liu
,
Y.
,
2017
, “
Self-Supporting Structure Design in Additive Manufacturing Through Explicit Topology Optimization
,”
Comput. Methods Appl. Mech. Eng.
,
323
, pp.
27
63
.
49.
Liu
,
P.
,
Luo
,
Y.
, and
Kang
,
Z.
,
2016
, “
Multi-Material Topology Optimization Considering Interface Behavior Via XFEM and Level Set Method
,”
Comput. Methods Appl. Mech. Eng.
,
308
, pp.
113
133
.
You do not currently have access to this content.