Tolerance analysis aims toward the verification impact of the individual tolerances on the assembly and functional requirements of a mechanism. The manufactured products have several types of contact and are inherent in imperfections, which often causes the failure of the assembly and its functioning. Tolerances are, therefore, allocated to each part of the mechanism in purpose to obtain an optimal quality of the final product. Three main issues are generally defined to realize the tolerance analysis of a mechanical assembly: the geometrical deviations modeling, the geometrical behavior modeling, and the tolerance analysis techniques. In this paper, a method is proposed to realize the tolerance analysis of an over-constrained mechanical assembly with form defects by considering the contacts nature (fixed, sliding, and floating contacts) in its geometrical behavior modeling. Different optimization methods are used to study the different contact types. The overall statistical tolerance analysis of the over-constrained mechanical assembly is carried out by determining the assembly and the functionality probabilities based on optimization techniques combined with a Monte Carlo simulation (MCS). An application to an over-constrained mechanical assembly is given at the end.

References

References
1.
Dumas
,
A.
,
Gayton
,
N.
,
Dantan
,
J.-Y.
, and
Sudret
,
B.
,
2015
, “
A New System Formulation for the Tolerance Analysis of Overconstrained Mechanisms
,”
Probab. Eng. Mech.
,
40
, pp.
66
74
.
2.
Qureshi
,
A. J.
,
Dantan
,
J. Y.
,
Sabri
,
V.
,
Beaucaire
,
P.
, and
Gayton
,
N.
,
2012
, “
A Statistical Tolerance Analysis Approach for Over-Constrained Mechanism Based on Optimisation and Monte-Carlo Simulation
,”
Comput.-Aided Des.
,
44
(
2
), pp.
132
142
.
3.
Ballu
,
A.
,
Plantec
,
J.-Y.
, and
Mathieu
,
L.
,
2008
, “
Geometrical Reliability of Overconstrained Mechanisms With Gaps
,”
CIRP Ann. Manuf. Technol.
,
57
(
1
), pp.
159
162
.
4.
Dantan
,
J. Y.
,
Mathieu
,
L.
,
Ballu
,
A.
, and
Martin
,
P.
,
2005
, “
Tolerance Synthesis: Quantifier Notion and Virtual Boundary
,”
Comput.-Aided Des.
,
37
(
2
), pp.
231
240
.
5.
Pierce
,
R. S.
, and
Rosen
,
D.
,
2008
, “
A Method for Integrating Form Errors Into Geometric Tolerance Analysis
,”
ASME J. Mech. Des.
,
130
(
1
), p.
011002
.
6.
Homri
,
L.
,
Goka
,
E.
,
Levasseur
,
G.
, and
Dantan
,
J.-Y.
,
2017
, “
Tolerance Analysis—Form Defects Modeling and Simulation by Modal Decomposition and Optimization
,”
Comput.-Aided Des.
, 91, pp.
46
59
.
7.
Grandjean
,
J.
,
Ledoux
,
Y.
,
Samper
,
S.
, and
Favrelière
,
H.
,
2013
, “
Form Errors Impact in a Rotating Plane Surface Assembly
,”
Procedia CIRP
,
10
, pp.
178
185
.
8.
Li
,
B.
, and
Roy
,
U.
,
2001
, “
Relative Positioning of Toleranced Polyhedral Parts in an Assembly
,”
IIE Trans.
,
33
(
4
), pp.
323
336
.
9.
Sodhi
,
R.
, and
Turner
,
J. U.
,
1994
, “
Relative Positioning of Variational Part Models for Design Analysis
,”
Comput.-Aided Des.
,
26
(
5
), pp.
366
278
.
10.
Louhichi
,
B.
,
Tlija
,
M.
,
Benamara
,
A.
, and
Tahan
,
A.
,
2015
, “
An Algorithm for CAD Tolerancing Integration: Generation of Assembly Configurations According to Dimensional and Geometrical Tolerances
,”
Comput.-Aided Des.
,
62
, pp.
259
274
.
11.
Morière
,
S.
,
Mailhé
,
J.
,
Linares
,
J.
, and
Sprauel
,
J.
,
2010
, “
Assembly Method Comparison Including Form Defect
,” Product Lifecycle Management: Geometric Variations, ISTE, London, pp. 258–270.
12.
Schleich
,
B.
,
Anwer
,
N.
,
Mathieu
,
L.
, and
Wartzack
,
S.
,
2015
, “
Contact and Mobility Simulation for Mechanical Assemblies Based on Skin Model Shapes
,”
ASME J. Comput. Inf. Sci. Eng.
,
15
(
2
), p.
021009
.
13.
Ameta
,
G.
,
2006
, “
Statistical Tolerance Analysis and Allocation for Assemblies Using Tolerance-Maps
,” Ph.D. thesis, Arizona State University, Tempe, AZ.
14.
Nigam
,
S. D.
, and
Turner
,
J. U.
,
1995
, “
Review of Statistical Approaches of Tolerance Analysis
,”
Comput.-Aided Des.
,
27
(
1
), pp.
6
15
.
15.
Chase
,
K. W.
,
Magleby
,
S. P.
, and
Glancy
,
C. G.
,
1997
, “
Tolerance Analysis of 2-D and 3-D Mechanical Assemblies With Small Kinematic Adjustments
,” ADCATS, Brigham Young University, Provo, UT, Report No.
97-5
.https://pdfs.semanticscholar.org/60e1/81da8f607504c034c5d6a46fb255c95ba8a4.pdf
16.
Gupta
,
S.
, and
Turner
,
J. U.
,
1993
, “
Variational Solid Modeling for Tolerance Analysis
,”
IEEE Comput. Graph. Appl.
,
13
(
3
), pp.
64
74
.
17.
Franciosa
,
P.
,
Gerbino
,
S.
, and
Patalano
,
S.
,
2010
, “
Variational Modeling and Assembly Constraints in Tolerance Analysis of Rigid Part Assemblies: Planar and Cylindrical Features
,”
Int. J. Adv. Manuf. Technol.
,
49
(
1–4
), pp.
239
251
.
18.
Huang
,
W.
, and
Ceglarek
,
D.
,
2002
, “
Mode-Based Decomposition of Part Form Error by Discrete-Cosine-Transform With Implementation to Assembly and Stamping System With Compliant Parts
,”
CIRP Ann. Manuf. Technol.
,
51
(
1
), pp.
21
26
.
19.
Fu
,
X.
,
Liu
,
G.
,
Ma
,
S.
,
Tong
,
R.
, and
Lim
,
T. C.
,
2017
, “
A Comprehensive Contact Analysis of Planetery Roller Screw Mechanism
,”
ASME J. Mech. Des.
,
139
(
1
), p.
012302
.
20.
Kamali Nejad
,
M.
,
Vignat
,
F.
,
Desrochers
,
A.
, and
Villeneuve
,
F.
,
2010
, “
3D Simulation of Manufacturing Defects for Tolerance Analysis
,”
ASME J. Comput. Inf. Sci. Eng.
,
10
(
2
), p.
021001
.
21.
Corrado
,
A.
,
Polini
,
W.
,
Moroni
,
G.
, and
Petrò
,
S.
,
2016
, “
3D Tolerance Analysis With Manufacturing Signature and Operating Conditions
,”
Procedia CIRP
,
43
, pp.
130
135
.
22.
,
H. N.
,
Ledoux
,
Y.
, and
Ballu
,
A.
,
2014
, “
Experimental and Theoretical Investigations of Mechanical Joints With Form Defects
,”
ASME J. Comput. Inf. Sci. Eng
,
14
(
4
), p.
041004
.
23.
Zou
,
Z.
, and
Morse
,
E. P.
,
2004
, “
A Gap-Based Approach to Capture Fitting Conditions for Mechanical Assembly
,”
Comput.-Aided Des.
,
36
(
8
), pp.
691
700
.
24.
Giordano
,
M.
, and
Mathieu
,
L.
, and
2010
,
Product Lifecycle Management: Geometric Variations
,
ISTE
,
London
.
25.
Lindau
,
B.
,
Lorin
,
S.
,
Lindkvist
,
L.
, and
Soderberg
,
R.
,
2016
, “
Efficient Contact Modeling in Nonrigid Variation Simulation
,”
ASME J. Comput. Inf. Sci. Eng.
,
16
(1), p. 011002.
26.
Beaucaire
,
P.
,
Gayton
,
N.
,
Duc
,
E.
, and
Dantan
,
J. Y.
,
2013
, “
Statistical Tolerance Analysis of Over-Constrained Mechanisms With Gaps Using System Reliability Methods
,”
Comput.-Aided Des.
,
45
(
15
), pp.
47
55
.
27.
Samper
,
S.
,
Adragna
,
P. A.
,
Favreliere
,
H.
, and
Pillet
,
M.
,
2010
, “
Modeling of 2D and 3D Assemblies Taking Into Account Form Errors of Plane Surfaces
,”
ASME J. Comput. Inf. Sci. Eng.
,
9
(
4
), p. 041005.
28.
Marziale
,
M.
, and
Polini
,
W.
,
2010
, “
Tolerance Analysis: A New Model Based on Variational Solid Modeling
,”
ASME
Paper No. ESDA2010-24437.
29.
Shen
,
Z.
,
Shah
,
J. J.
, and
Davidson
,
J. K.
,
2005
, “
Simulation-Based Tolerance and Assemblability Analyses of Assemblies With Multiple Pin/Hole Floating Mating Conditions
,”
ASME
Paper No. DETC2005-85398.
30.
Bourdet
,
P.
,
Mathieu
,
L.
,
Lartigue
,
C.
, and
Ballu
,
A.
,
1996
, “
The Concept of the Small Displacement Torsor in Metrology
,”
Advanced Mathematical Tools in Metrology II
(Series on Advances in Mathematics for Applied Sciences, Vol. 40), pp.
110
122
.
31.
Ballu
,
A.
,
Mathieu
,
L.
, and
Legoff
,
O.
,
2010
, “
Representation of Mechanical Assemblies and Specifications by Graphs
,”
Geometric Tolerancing of Products
,
Wiley
,
Hoboken, NJ
, pp.
87
110
.
32.
Dantan
,
J.-Y.
,
Huang
,
Z.
,
Goka
,
E.
,
Homri
,
L.
,
Etienne
,
A.
,
Bonnet
,
N.
, and
Rivette
,
M.
,
2017
, “
Geometrical Variations Management for Additive Manufactured Product
,”
CIRP Ann.
,
66
(
1
), pp.
161
164
.
33.
Moroni
,
G.
, and
Polini
,
W.
,
2003
, “
Tolerance-Based Variations in Solid Modeling
,”
ASME J. Comput. Inf. Sci. Eng.
,
3
(
4
), pp.
345
352
.
34.
Strohmer
,
T.
, and
Tanner
,
J.
,
2005
, “
Implementations of Shannon's Sampling Theorem, a Time-Frequency Approach
,”
Sampling Theory Signal Image Process.
,
4
(
1
), pp.
1
17
.https://people.maths.ox.ac.uk/tanner/papers/strohmer_tanner.pdf
35.
Anselmetti
,
B.
,
2006
, “
Generation of Functional Tolerancing Based on Positioning Features
,”
Comput.-Aided Des.
,
38
(
8
), pp.
902
919
.
36.
Dumas
,
A.
,
2015
, “
An Iterative Statistical Tolerance Analysis Procedure to Deal With Linearized Behavior Models
,”
J. Zhejiang Univ.-Sci. A (Appl. Phys. Eng.)
,
16
(
5
), pp.
353
360
.
37.
Lemaire
,
M.
,
2009
,
Structural Reliability
,
Wiley
,
London
.
38.
Au
,
S.-K.
, and
Beck
,
J. L.
,
2001
, “
Estimation of Small Failure Probabilities in High Dimensions by Subset Simulation
,”
Probab. Eng. Mech.
,
16
(
4
), pp.
263
277
.
You do not currently have access to this content.