The goal of this research is to optimize an object's macroscopic topology and localized gradient material properties (GMPs) subject to multiple loading conditions simultaneously. The gradient material of each macroscopic cell is modeled as an orthotropic material where the elastic moduli in two local orthogonal directions we call x and y can change. Furthermore, the direction of the local coordinate system can be rotated to align with the loading conditions on each cell. This orthotropic material is similar to a fiber-reinforced material where the number of fibers in the local x and y-directions can change for each cell, and the directions can as well be rotated. Repeating cellular unit cells, which form a mesostructure, can also achieve these customized orthotropic material properties. Homogenization theory allows calculating the macroscopic averaged bulk properties of these cellular materials. By combining topology optimization with gradient material optimization and fiber orientation optimization, the proposed algorithm significantly decreases the objective, which is to minimize the strain energy of the object subject to multiple loading conditions. Additive manufacturing (AM) techniques enable the fabrication of these designs by selectively placing reinforcing fibers or by printing different mesostructures in each region of the design. This work shows a comparison of simple topology optimization, topology optimization with isotropic gradient materials, and topology optimization with orthotropic gradient materials. Finally, a trade-off experiment shows how different optimization parameters, which affect the range of gradient materials used in the design, have an impact on the final objective value of the design. The algorithm presented in this paper offers new insight into how to best take advantage of new AM capabilities to print objects with gradient customizable material properties.

References

References
1.
Sobczak
,
J. J.
, and
Drenchev
,
L.
,
2013
, “
Metallic Functionally Graded Materials: A Specific Class of Advanced Composites
,”
J. Mater. Sci. Technol.
,
29
(
4
), pp.
297
–.
2.
Birman
,
V.
, and
Byrd
,
L. W.
,
2007
, “
Modeling and Analysis of Functionally Graded Materials and Structures
,”
Appl. Mech. Rev.
,
60
(
5
), pp.
195
216
.
3.
Griffith
,
M. L.
,
Harwell
,
L. D.
,
Romero
,
J. T.
,
Schlienger
,
E.
,
Atwood
,
C. L.
, and
Smugeresky
,
J. E.
,
1997
, “
Multi-Material Processing by LENS
,”
Solid Freeform Fabrication Symposium
, Austin, TX, Aug. 11–13, p.
387
.http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.476.3973&rep=rep1&type=pdf
4.
Tammas-Williams
,
S.
, and
Todd
,
I.
,
2016
, “
Design for Additive Manufacturing With Site-Specific Properties in Metals and Alloys
,”
Scr. Mater.
,
135,
pp. 105–110.
5.
Guedes
,
J. M.
, and
Kikuchi
,
N.
,
1990
, “
Preprocessing and Postprocessing for Materials Based on the Homogenization Method With Adaptive Finite Element Methods
,”
Comput. Methods Appl. Mech. Eng.
,
83
(
2
), pp.
143
198
.
6.
Shankar
,
P.
,
Fazelpour
,
M.
, and
Summers
,
J. D.
,
2015
, “
Comparative Study of Optimization Techniques in Sizing Mesostructures for Use in Nonpneumatic Tires
,”
ASME J. Comput. Inf. Sci. Eng.
,
15
(
4
), p.
041009
.
7.
Thompson
,
M. K.
,
Moroni
,
G.
,
Vaneker
,
T.
,
Fadel
,
G.
,
Campbell
,
R. I.
,
Gibson
,
I.
,
Bernard
,
A.
,
Schulz
,
J.
,
Graf
,
P.
,
Ahuja
,
B.
, and
Martina
,
F.
,
2016
, “
Design for Additive Manufacturing: Trends, Opportunities, Considerations, and Constraints
,”
CIRP Ann. Manuf. Technol.
,
65
(
2
), pp.
737
760
.
8.
Garland
,
A.
, and
Fadel
,
G.
,
2015
, “
Design and Manufacturing Functionally Gradient Material Objects With an Off the Shelf Three-Dimensional Printer: Challenges and Solutions
,”
ASME J. Mech. Des.
,
137
(
11
), p.
111709
.
9.
Garland
,
A.
, and
Fadel
,
G.
,
2016
, “
Multi-Objective Optimal Design of Functionally Gradient Materials
,”
ASME
Paper No. DETC2016-59298.
10.
Matsuzaki
,
R.
,
Ueda
,
M.
,
Namiki
,
M.
,
Jeong
,
T.-K.
,
Asahara
,
H.
,
Horiguchi
,
K.
,
Nakamura
,
T.
,
Todoroki
,
A.
, and
Hirano
,
Y.
,
2016
, “
Three-Dimensional Printing of Continuous-Fiber Composites by In-Nozzle Impregnation
,”
Sci. Rep.
,
6
, p.
23058
.
11.
Huang
,
Y.
,
Leu
,
M. C.
,
Mazumder
,
J.
, and
Donmez
,
A.
,
2014
, “
Additive Manufacturing: Current State, Future Potential, Gaps and Needs, and Recommendations
,”
ASME J. Manuf. Sci. Eng.
,
137
, p. 014001.
12.
Sigmund
,
O.
, and
Maute
,
K.
,
2013
, “
Topology Optimization Approaches
,”
Struct. Multidiscip. Optim.
,
48
(
6
), pp.
1031
1055
.
13.
Tang
,
Y.
,
Hascoet
,
J.-Y.
, and
Zhao
,
Y. F.
,
2014
, “
Integration of Topological and Functional Optimization in Design for Additive Manufacturing
,”
ASME
Paper No. ESDA2014-20381.
14.
Tang
,
Y.
, and
Zhao
,
Y. F.
,
2016
, “
A Survey of the Design Methods for Additive Manufacturing to Improve Functional Performance
,”
Rapid Prototyping J.
,
22
(
3
), pp.
569
590
.
15.
Rosen
,
D. W.
,
2014
, “
Multiscale, Heterogeneous Computer Aided Design Representation for Metal Alloy Microstructures
,”
ASME J. Comput. Inf. Sci. Eng.
,
14
(
4
), p.
41003
.
16.
Muller
,
P.
,
Hascoet
,
J.-Y.
, and
Mognol
,
P.
,
2014
, “
Toolpaths for Additive Manufacturing of Functionally Graded Materials (FGM) Parts
,”
Rapid Prototyping J.
,
20
(
6
), pp.
511
522
.
17.
Comotti
,
C.
,
Regazzoni
,
D.
,
Rizzi
,
C.
, and
Vitali
,
A.
,
2017
, “
Additive Manufacturing to Advance Functional Design: An Application in the Medical Field
,”
ASME J. Comput. Inf. Sci. Eng.
,
17
(
3
), p.
031006
.
18.
Eschenauer
,
H. A.
, and
Olhoff
,
N.
,
2001
, “
Topology Optimization of Continuum Structures: A Review*
,”
ASME Appl. Mech. Rev.
,
54
(
4
), pp.
331
390
.
19.
Wang
,
M.
,
Wang
,
X.
, and
Guo
,
D.
,
2003
, “
A Level Set Method for Structural Topology Optimization
,”
Comput. Methods Appl. Mech. Eng.
,
192
(
1–2
), pp.
227
246
.
20.
van Dijk
,
N. P.
,
Maute
,
K.
,
Langelaar
,
M.
, and
Van Keulen
,
F.
,
2013
, “
Level-Set Methods for Structural Topology Optimization: A Review
,”
Struct. Multidiscip. Optim.
,
48
(
3
), pp.
437
472
.
21.
Bendsoe
,
M. P.
,
1995
,
Optimization of Structural Topology, Shape, and Material
,
Springer-Verlag
,
Berlin
, Chap. 1.
22.
Sigmund
,
O.
,
2001
, “
A 99 Line Topology Optimization Code Written in Matlab
,”
Struct. Multidiscip. Optim.
,
21
(
2
), pp.
120
127
.
23.
Garland
,
A.
,
Mocko
,
G.
, and
Fadel
,
G.
,
2014
, “
Challenges in Designing and Manufacturing Fully Optimized Functional Gradient Material Objects
,”
ASME
Paper No. DETC2014-34544.
24.
Hughes
,
T. J. R.
,
Cottrell
,
J. A.
, and
Bazilevs
,
Y.
,
2005
, “
Isogeometric Analysis: CAD, Finite Elements, NURBS, Exact Geometry and Mesh Refinement
,”
Comput. Methods Appl. Mech. Eng.
,
194
(
39–41
), pp.
4135
4195
.
25.
Morvan
,
S.
,
2001
, “
MMa-Rep, A Representation for Multimaterial Solids
,” Clemson University, Clemson, SC.
26.
Kou
,
X. Y.
, and
Tan
,
S. T.
,
2007
, “
Heterogeneous Object Modeling: A Review
,”
Comput.-Aided Des.
,
39
(
4
), pp.
284
301
.
27.
Jackson
,
T. R.
,
2000
, “
Analysis of Functionally Graded Material Object Representation Methods
,”
Ph.D. thesis
, Massachusetts Institute of Technology, Cambridge, MA.https://dspace.mit.edu/handle/1721.1/9032
28.
Gupta
,
V.
, and
Tandon
,
P.
,
2017
, “
Heterogeneous Composition Adaptation With Material Convolution Control Features
,”
ASME J. Comput. Inf. Sci. Eng.
,
17
(
2
), p.
021008
.
29.
Taheri
,
A. H.
,
Hassani
,
B.
, and
Moghaddam
,
N. Z.
,
2014
, “
Thermo-Elastic Optimization of Material Distribution of Functionally Graded Structures by an Isogeometrical Approach
,”
Int. J. Solids Struct.
,
51
(
2
), pp.
416
429
.
30.
Huang
,
J.
,
Fadel
,
G. M.
,
Blouin
,
V. Y.
, and
Grujicic
,
M.
,
2002
, “
Bi-Objective Optimization Design of Functionally Gradient Materials
,”
Mater. Des.
,
23
(
7
), pp.
657
666
.
31.
Kou
,
X. Y.
, and
Tan
,
S. T.
,
2005
, “
A Hierarchical Representation for Heterogeneous Object Modeling
,”
Comput.-Aided Des.
,
37
(
3
), pp.
307
319
.
32.
Kou
,
X. Y.
,
Parks
,
G. T.
, and
Tan
,
S. T.
,
2012
, “
Optimal Design of Functionally Graded Materials Using a Procedural Model and Particle Swarm Optimization
,”
Comput.-Aided Des.
,
44
(
4
), pp.
300
310
.
33.
Hu
,
Y.
,
Fadel
,
G. M.
,
Blouin
,
V. Y.
, and
White
,
D. R.
,
2006
, “
Optimal Design for Additive Manufacturing of Heterogeneous Objects Using Ultrasonic Consolidation
,”
Virtual Phys. Prototyping
,
1
(
1
), pp.
53
62
.
34.
Cho
,
J. R.
, and
Ha
,
D. Y.
,
2002
, “
Optimal Tailoring of 2D Volume-Fraction Distributions for Heat-Resisting Functionally Graded Materials Using FDM
,”
Comput. Methods Appl. Mech. Eng.
,
191
(
29–30
), pp.
3195
3211
.
35.
Cho
,
J. R.
, and
Shin
,
S. W.
,
2004
, “
Material Composition Optimization for Heat-Resisting FGMs by Artificial Neural Network
,”
Compos. Part A Appl. Sci. Manuf.
,
35
(
5
), pp.
585
594
.
36.
Coelho
,
P. G.
,
Guedes
,
J. M.
, and
Rodrigues
,
H. C.
,
2015
, “
Multiscale Topology Optimization of Bi-Material Laminated Composite Structures
,”
Compos. Struct.
,
132
, pp.
495
505
.
37.
Stegmann
,
J.
, and
Lund
,
E.
,
2005
, “
Discrete Material Optimization of General Composite Shell Structures
,”
Int. J. Numer. Methods Eng.
,
62
(
14
), pp.
2009
2027
.
38.
Henrichsen
,
S.
,
Lindgaard
,
E.
, and
Lund
,
E.
,
2015
, “
Free Material Stiffness Design of Laminated Composite Structures Using Commercial Finite Element Analysis Codes
,”
Struct. Multidiscip. Optim.
,
51
(
5
), pp.
1097
1111
.
39.
Liu
,
J.
,
Duke
,
K.
, and
Ma
,
Y.
,
2015
, “
Computer-Aided Design–Computer-Aided Engineering Associative Feature-Based Heterogeneous Object Modeling
,”
Adv. Mech. Eng.
,
7
(
12
), epub.
40.
Lipton
,
R.
, and
Stuebner
,
M.
,
2007
, “
Optimal Design of Composite Structures for Strength and Stiffness: An Inverse Homogenization Approach
,”
Struct. Multidiscip. Optim.
,
33
(
4–5
), pp.
351
362
.
41.
Zuo
,
Z. H.
,
Huang
,
X.
,
Rong
,
J. H.
, and
Xie
,
Y. M.
,
2013
, “
Multi-Scale Design of Composite Materials and Structures for Maximum Natural Frequencies
,”
Mater. Des.
,
51
, pp.
1023
1034
.
42.
Garland
,
A.
, and
Fadel
,
G.
,
2015
, “
Manufacturing Functionally Gradient Material Objects With an Off the Shelf 3D Printer: Challenges and Solutions
,”
ASME
Paper No. DETC2015-47841.
43.
Garland
,
A.
,
2017
, “
garland3/clemsonPhD: JCISE Paper Snapshot
,” accessed Nov. 24, 2018, https://doi.org/10.5281/zenodo.148127
44.
Rodrigues
,
H.
,
Guedes
,
J. M.
, and
Bendsoe
,
M. P.
,
2002
, “
Hierarchical Optimization of Material and Structure
,”
Struct. Multidiscip. Optim.
,
24
(
1
), pp.
1
10
.
45.
Coelho
,
P. G.
,
Fernandes
,
P. R.
,
Guedes
,
J. M.
, and
Rodrigues
,
H. C.
,
2008
, “
A Hierarchical Model for Concurrent Material and Topology Optimisation of Three-Dimensional Structures
,”
Struct. Multidiscip. Optim.
,
35
(
2
), pp.
107
115
.
46.
Xia
,
Q.
, and
Wang
,
M. Y.
,
2008
, “
Simultaneous Optimization of the Material Properties and the Topology of Functionally Graded Structures
,”
Comput.-Aided Des.
,
40
(
6
), pp.
660
675
.
47.
Dunning
,
P. D.
,
Brampton
,
C. J.
, and
Kim
,
H. A.
,
2015
, “
Simultaneous Optimisation of Structural Topology and Material Grading Using Level Set Method
,”
Mater. Sci. Technol.
,
31
(
8
), pp.
884
894
.
48.
Sigmund
,
O.
,
1995
, “
Tailoring Materials With Prescribed Elastic Properties
,”
Mech. Mater.
,
20
(
4
), pp.
351
368
.
49.
Zuo
,
Z. H.
,
Huang
,
X.
,
Yang
,
X.
,
Rong
,
J. H.
, and
Xie
,
Y. M.
,
2013
, “
Comparing Optimal Material Microstructures With Optimal Periodic Structures
,”
Comput. Mater. Sci.
,
69
, pp.
137
147
.
50.
Huang
,
X.
,
Radman
,
A.
, and
Xie
,
Y. M.
,
2011
, “
Topological Design of Microstructures of Cellular Materials for Maximum Bulk or Shear Modulus
,”
Comput. Mater. Sci.
,
50
(
6
), pp.
1861
1870
.
51.
Van Der Klift
,
F.
,
Koga
,
Y.
,
Todoroki
,
A.
,
Ueda
,
M.
,
Hirano
,
Y.
, and
Matsuzaki
,
R.
,
2015
, “
3D Printing of Continuous Carbon Fibre Reinforced Thermo-Plastic (CFRTP) Tensile Test Specimens
,”
Open J. Compos. Mater.
,
6
(1), pp.
18
27
.https://www.scirp.org/journal/PaperInformation.aspx?PaperID=62614
You do not currently have access to this content.