Synthesizing circuit-, branch-, or order-defects-free planar four-bar mechanism for the motion generation problem has proven to be a difficult problem. These defects render synthesized mechanisms useless to machine designers. Such defects arise from the artificial constraints of formulating the problem as a discrete precision position problem and limitations of the methods, which ignore the continuity information in the input. In this paper, we bring together diverse fields of pattern recognition, machine learning, artificial neural network, and computational kinematics to present a novel approach that solves this problem both efficiently and effectively. At the heart of this approach lies an objective function, which compares the motion as a whole thereby capturing designer's intent. In contrast to widely used structural error or loop-closure equation-based error functions, which convolute the optimization by considering shape, size, position, and orientation of the given task simultaneously, this objective function computes motion difference in a form, which is invariant to similarity transformations. We employ auto-encoder neural networks to create a compact and clustered database of invariant motions of known defect-free linkages, which serve as a good initial choice for further optimization. In spite of highly nonlinear parameters space, our approach discovers a wide pool of defect-free solutions very quickly. We show that by employing proven machine learning techniques, this work could have far-reaching consequences to creating a multitude of useful and creative conceptual design solutions for mechanism synthesis problems, which go beyond planar four-bar linkages.

References

References
1.
McCarthy
,
J. M.
, and
Soh
,
G. S.
,
2010
,
Geometric Design of Linkages
, Vol.
11
,
Springer
, New York.
2.
Sandor
,
G. N.
, and
Erdman
,
A. G.
,
1997
,
Advanced Mechanism Design: Analysis and Synthesis
, Vol.
2
,
Prentice Hall
,
Englewood Cliffs, NJ
.
3.
Hunt
,
K.
,
1978
,
Kinematic Geometry of Mechanisms
,
Clarendon Press
,
Oxford
.
4.
Hartenberg
,
R. S.
, and
Denavit
,
J.
,
1964
,
Kinematic Synthesis of Linkages
,
McGraw-Hill
,
New York
.
5.
Suh
,
C. H.
, and
Radcliffe
,
C. W.
,
1978
,
Kinematics and Mechanism Design
,
Wiley
,
New York
.
6.
Lohse
,
P.
,
2013
,
Getriebesynthese: Bewegungsablufe Ebener Koppelmechanismen
, Springer, Berlin.
7.
Chase
,
T.
, and
Mirth
,
J.
,
1993
, “
Circuits and Branches of Single-Degree-of-Freedom Planar Linkages
,”
ASME J. Mech. Des.
,
115
(
2
), pp.
223
230
.
8.
Burmester
,
L.
,
1886
,
Lehrbuch Der Kinematik
,
Verlag Von Arthur Felix
,
Leipzig, Germany
.
9.
Cabrera
,
J. A.
,
Simon
,
A.
, and
Prado
,
M.
,
2002
, “
Optimal Synthesis of Mechanisms With Genetic Algorithms
,”
Mech. Mach. Theory
,
37
(
10
), pp.
1165
1177
.
10.
Sardashti
,
A.
,
Daniali
,
H. M.
, and
Varedi
,
S. M.
,
2013
, “
Optimal Free-Defect Synthesis of Four-Bar Linkage With Joint Clearance Using PSO Algorithm
,”
Meccanica
,
48
(
7
), pp.
1681
1693
.
11.
Ebrahimi
,
S.
, and
Payvandy
,
P.
,
2015
, “
Efficient Constrained Synthesis of Path Generating Four-Bar Mechanisms Based on the Heuristic Optimization Algorithms
,”
Mech. Mach. Theory
,
85
, pp.
189
204
.
12.
Bulatovic
,
R. R.
,
Dordevic
,
S. R.
, and
Dordevic
,
V. S.
,
2013
, “
Cuckoo Search Algorithm: A Metaheuristic Approach to Solving the Problem of Optimum Synthesis of a Six-Bar Double Dwell Linkage
,”
Mech. Mach. Theory
,
61
, pp.
1
13
.
13.
Ullah
,
I.
, and
Kota
,
S.
,
1997
, “
Optimal Synthesis of Mechanisms for Path Generation Using Fourier Descriptors and Global Search Methods
,”
ASME J. Mech. Des.
,
119
(
4
), pp.
504
510
.
14.
Wu
,
J.
,
Ge
,
Q. J.
,
Gao
,
F.
, and
Guo
,
W. Z.
,
2011
, “
On the Extension of a Fourier Descriptor Based Method for Planar Four-Bar Linkage Synthesis for Generation of Open and Closed Paths
,”
ASME J. Mech. Rob.
,
3
(
3
), p. 031002.
15.
Li
,
X.
,
Wu
,
J.
, and
Ge
,
Q. J.
,
2016
, “
A Fourier Descriptor-Based Approach to Design Space Decomposition for Planar Motion Approximation
,”
ASME J. Mech. Rob.
,
8
(
6
), p.
064501
.
16.
Buskiewicz
,
J.
,
Starosta
,
R.
, and
Walczak
,
T.
,
2009
, “
On the Application of the Curve Curvature in Path Synthesis
,”
Mech. Mach. Theory
,
44
(
6
), pp.
1223
1239
.
17.
Khan
,
N.
,
Ullah
,
I.
, and
Al-Grafi
,
M.
,
2015
, “
Dimensional Synthesis of Mechanical Linkages Using Artificial Neural Networks and Fourier Descriptors
,”
Mech. Sci.
,
6
(
1
), pp.
29
34
.
18.
Mcgarva
,
J. R.
,
1994
, “
Rapid Search and Selection of Path Generating Mechanisms From a Library
,”
Mech. Mach. Theory
,
29
(
2
), pp.
223
235
.
19.
Wandling
,
G. R.
, Sr.
,
2000
, “
Synthesis of Mechanisms for Function, Path, and Motion Generation Using Invariant Characterization, Storage and Search Methods
,”
Ph.D. thesis
, Iowa State University, Ames, IA.https://lib.dr.iastate.edu/rtd/12383/
20.
Yue
,
C.
,
Su
,
H.-J.
, and
Ge
,
Q.
,
2011
, “
Path Generator Via the Type-P Fourier Descriptor for Open Curves
,”
13th World Congress in Mechanism and Machine Science
, Guanajuato, Mexico, June 19–25, Paper No. AIL506.
21.
Chu
,
J. K.
, and
Sun
,
J. W.
,
2010
, “
A New Approach to Dimension Synthesis of Spatial Four-Bar Linkage Through Numerical Atlas Method
,”
ASME J. Mech. Rob.
,
2
(
4
), p. 041004.
22.
Cui
,
M.
,
Femiani
,
J.
,
Hu
,
J.
,
Wonka
,
P.
, and
Razdan
,
A.
,
2009
, “
Curve Matching for Open 2D Curves
,”
Pattern Recognit. Lett.
,
30
(
1
), pp.
1
10
.
23.
McCarthy
,
J. M.
,
1990
,
Introduction to Theoretical Kinematics
,
The MIT Press
,
Cambridge, MA
.
24.
Bottema
,
O.
, and
Roth
,
B.
,
1979
,
Theoretical Kinematics
,
Dover Publication
,
New York
.
25.
Lewis
,
J. P.
,
1995
, “
Fast Normalized Cross-Correlation
,”
Vision Interface
, Vol.
10
, Canadian Image Processing and Pattern Recognition Society, pp. 120–123.
26.
Marimont
,
R. B.
, and
Shapiro
,
M. B.
,
1979
, “
Nearest Neighbor Searches and the Curse of Dimensionality
,”
J. Inst. Math. Appl.
,
24
(
1
), pp.
59
70
.
27.
Hinton
,
G. E.
, and
Salakhutdinov
,
R. R.
,
2006
, “
Reducing the Dimensionality of Data With Neural Networks
,”
Science
,
313
(
5786
), pp.
504
507
.
28.
Song
,
C.
,
Liu
,
F.
,
Huang
,
Y.
,
Wang
,
L.
, and
Tan
,
T.
,
2013
, “
Auto-Encoder Based Data Clustering
,”
Iberoamerican Congress on Pattern Recognition
,
Springer
, Berlin, pp.
117
124
.
29.
Ward
,
J. H.
,
1963
, “
Hierarchical Grouping to Optimize an Objective Function
,”
J. Am. Stat. Assoc.
,
58
(
301
), pp.
236
244
.
30.
Ge
,
Q. J.
,
Purwar
,
A.
,
Zhao
,
P.
, and
Deshpande
,
S.
,
2016
, “
A Task Driven Approach to Unified Synthesis of Planar Four-Bar Linkages Using Algebraic Fitting of a Pencil of G-Manifolds
,”
ASME J. Comput. Inf. Sci. Eng.
, 17(3), p. 031011.
31.
Deshpande
,
S.
, and
Purwar
,
A.
,
2017
, “
A Task-Driven Approach to Optimal Synthesis of Planar Four-Bar Linkages for Extended Burmester Problem
,”
ASME J. Mech. Rob.
,
9
(
6
), p.
061005
.
You do not currently have access to this content.