The accumulated error and noise sensitivity are the two common problems of ordinary inertial sensors. An accurate gyroscope is too expensive, which is not normally applicable in low-cost missions of mobile robots. Since the accelerometers are rather cheaper than similar types of gyroscopes, using redundant accelerometers could be considered as an alternative. This mechanism is called gyroscope-free navigation. The article deals with autonomous mobile robot (AMR) navigation based on gyroscope-free method. In this research, the navigation errors of the gyroscope-free method in long-time missions are demonstrated. To compensate the position error, the aid information of low-cost stereo cameras and a topological map of the workspace are employed in the navigation system. After precise sensor calibration, an amendment algorithm is presented to fuse the measurement of gyroscope-free inertial measurement unit (GFIMU) and stereo camera observations. The advantages and comparisons of vision aid navigation and gyroscope-free navigation of mobile robots will be also discussed. The experimental results show the increasing accuracy in vision-aid navigation of mobile robot.

References

References
1.
Sales
,
D. O.
,
Correa
,
D. O.
,
Fernandes
,
L. C.
,
Wolf
,
D. F.
, and
Osorio
,
F. S.
,
2014
, “
Adaptive Finite State Machine Based Visual Autonomous Navigation System
,”
Eng. Appl. Artif. Intell.
,
29
, pp.
152
162
.
2.
Kok
,
M.
,
Hol
,
J. D.
, and
Schon
,
T. B.
,
2017
, “
Using Inertial Sensors for Position and Orientation Estimation
,”
Found. Trends Signal Process.
,
11
(
1–2
), pp.
1
153
.
3.
Dehghani
,
M.
,
Kharrati
,
H.
,
Seyedarabi
,
H.
, and
Baradarannia
,
M.
,
2018
, “
Improvement of Angular Velocity and Position Estimation in Gyro-Free Inertial Navigation Based on Vision Aid Equipment
,”
IET Comput. Vision
,
12
(
3
), pp. 261–275.
4.
Kortenkamp
,
D.
,
Bonasso
,
R.
, and
Murphy
,
R.
,
1991
,
AI-Based Mobile Robots: Case Studies of Successful Robot Systems
,
The MIT Press
, Cambridge, MA, pp.
125
140
.
5.
Krishnan
,
V.
,
1965
, “
Measurement of Angular Velocity and Linear Acceleration Using Linear Accelerometers
,”
J. Franklin Inst.
,
280
(
4
), pp.
307
315
.
6.
Williams
,
T.
,
Pahadia
,
A.
,
Petovello
,
M.
, and
Lachapelle
,
G.
,
2009
, “
Using an Accelerometer Configuration to Improve the Performance of a MEMS IMU: Feasibility Study With a Pedestrian Navigation Application
,” 22nd International Technical Meeting of the Satellite Division of the Institute of Navigation (
ION GNSS
), Savannah, GA, Sept. 22–25, pp.
3049
3063
.https://www.ion.org/publications/abstract.cfm?articleID=8719
7.
Lu
,
J.
, and
Lin
,
P.
,
2011
, “
State Derivation of a 12-Axis Gyroscope-Free Inertial Measurement Unit
,”
Sensors
,
11
(
3
), pp.
3145
3162
.
8.
Schopp
,
P.
,
Klingbeil
,
L.
,
Peters
,
C.
, and
Manoli
,
Y.
,
2010
, “
Design, Geometry Evaluation and Calibration of a Gyroscope-Free Inertial Measurement Unit
,”
Sens. Actuators
,
162
(
2
), pp.
379
387
.
9.
Liu
,
C.
,
Zhang
,
S.
,
Yu
,
S.
,
Yuan
,
X.
, and
Liu
,
S.
,
2014
, “
Design and Analysis of Gyro-Free Inertial Measurement Units With Different Confgurations
,”
Sens. Actuators
,
214
, pp. 175–186.
10.
Xu
,
H.
, and
Shen
,
Y. P.
,
2013
, “
Target Tracking Control of Mobile Robot in Diversified Manoeuvre Modes With a Low Cost Embedded Vision System
,”
Ind. Robot Int. J.
,
40
(
3
), pp.
275
287
.
11.
Jones
,
S. D.
,
Andresen
,
C.
, and
Crowley
,
J. L.
,
1997
, “
Appearance Based Process for Visual Navigation
,”
Fifth International Symposium on Intelligent Robotic Systems
(
IROS '97
), Grenoble, France, Sept. 7–11, pp. 236–242.
12.
Matsumoto
,
Y.
,
Inaba
,
M.
, and
Inoue
,
H.
,
2003
, “
View-Based Navigation Using an Omni-View Sequence in a Corridor Environment
,”
Vision Appl.
,
14
(
2
), pp.
121
128
.
13.
Maohai
,
L.
,
Han
,
W.
,
Lining
,
S.
, and
Zesu
,
C.
,
2013
, “
Robust Omnidirectional Mobile Robot Topological Navigation System Using Omnidirectional Vision
,”
Eng. Appl. Artificial Intell.
,
26
(
8
), pp.
1942
1952
.
14.
Jefferson
,
R.
,
Souza
,
N.
,
Pessin
,
G.
,
Shinzato
,
P.
,
Osorio
,
F.
, and
Wolf
,
D.
,
2013
, “
Vision-Based Waypoint Following Using Templates and Artificial Neural Networks
,”
Neuro Comput.
,
107
, pp.
77
86
.
15.
Zhang
,
Z.
,
2001
, “
A Flexible New Technique for Camera Calibration
,”
IEEE Trans. Pattern Anal. Mach. Intell.
,
22
(
11
), pp.
1330
1334
.
16.
Dehghani
,
M.
,
Ahmadi
,
M.
,
Khayatian
,
A.
, and
Eghtesad
,
M.
,
2014
, “
Vision-Based Calibration of a Hexa Parallel Robot
,”
Ind. Robot Int. J.
,
41
(
3
), pp.
296
310
.
17.
O'Donnell
,
C. F.
,
2007
,
Inertial Navigation: Analysis and Design
,
McGraw-Hill
, New York, pp.
53
64
.
18.
Hartley
,
R.
, and
Zisserman
,
A.
,
2004
,
A Multiple View Geometry in Computer Vision
,
2nd ed.
,
Cambridge University Press
, Cambridge, UK.
19.
Foxlin
,
E.
, and
Naimark
,
L.
,
2004
, “
Miniaturization, Calibration and Accuracy Evaluation of a Hybrid Self-Tracker
,”
Second IEEE and ACM International Symposium on Mixed and Augmented Reality
, Tokyo, Japan, Oct. 7–10, pp. 151–158.
20.
Bouguet
,
J. Y.
, and
Perona
,
P.
,
1998
, “
3D Photography on Your Desk
,”
Sixth International Conference on Computer Vision
, Bombay, India, Jan. 4–7, pp. 43–50.
21.
Alhwarin
,
F.
,
Wang
,
D.
,
Ristic-Durrant
,
D.
, and
Gräser,
,
A.
,
2008
, “
Improved SIFT-Features Matching for Object Recognition
,”
BCS International Academic Conference on Visions of Computer Science
, London, Sept. 22–24https://ewic.bcs.org/content/ConWebDoc/22888.
22.
Azeem
,
A.
,
Sharif
,
M.
,
Shah
,
J.
, and
Raza
,
M.
,
2015
, “
Hexagonal Scale Invariant Feature Transform (H-SIFT) for Facial Feature Extraction
,”
J. Appl. Res. Technol.
,
13
(
3
), pp.
402
408
.
You do not currently have access to this content.