During product development one important aspect is the geometric robustness of the design. This is due to the fact that all manufacturing processes lead to products with variation. Failing to properly account for the variability of the process in the design phase may lead to expensive redesign. One important tool during the design phase in many industries is variation simulation, which makes it possible to predict and optimize the geometric quality of the design. However, despite the increase in computer power, calculation time is still an obstacle for the wider use of variation simulation. In this article, we propose a new method for efficient compliant variation simulation of spot-welded sheet metal assemblies. The method is exact, and we show that the method leads to time savings in simulation of approximately 40–50% compared to current state-of-the-art variation simulation.

References

References
1.
Söderberg
,
R.
,
Lindkvist
,
L.
,
Wärmefjord
,
K.
, and
Carlson
,
J. S.
,
2016
, “
Virtual Geometry Assurance Process and Toolbox
,”
Procedia CIRP
,
43
, pp.
3
12
.
2.
Lindau
,
B.
,
Rosenqvist
,
M.
,
Lindkvist
,
L.
, and
Söderberg
,
R.
,
2015
, “
Challenges Moving From Physical Into Virtual Verification of Sheet Metal Assemblies
,”
ASME
Paper No. IMECE2015-51024.
3.
Wickman
,
C.
,
2005
,
Visualising the Effect of Geometrical Variation in Assembled Products. Predicting Visual Quality Appearance
,
Chalmers University of Technology
,
Gothenburg, Sweden
.
4.
Forslund
,
K.
,
2009
,
Visual Robustness: Effects of Variation on Product Appearance and Perceived Quality
,
Chalmers University of Technology
,
Gothenburg, Sweden
.
5.
Phadke
,
M. S.
,
1995
,
Quality Engineering Using Robust Design
,
Prentice Hall PTR
, Upper Saddle River, NJ.
6.
Liu
,
S. C.
, and
Hu
,
S. J.
,
1997
, “
Variation Simulation for Deformable Sheet Metal Assemblies Using Finite Element Methods
,”
ASME J. Manuf. Sci. Eng.
,
119
(
3
), pp.
368
374
.
7.
Dahlström
,
S.
,
2005
,
Variation Simulation of Sheet Metal Assemblies for Geometrical Quality: Parameter Modeling and Analysis
,
Chalmers University of Technology
,
Gothenburg, Sweden
.
8.
Wärmefjord
,
K.
,
2011
,
Variation Control in Virtual Product Realization-A Statistical Approach
,
Chalmers University of Technology
,
Gothenburg, Sweden
.
9.
Segeborn
,
J.
,
2011
,
Cost-Effective Sheet Metal Assembly by Automatic Path Planning and Line Balancing, Integrated With Dimensional Variation Analysis
,
Chalmers University of Technology
,
Gothenburg, Sweden
.
10.
Nagy-Sochacki
,
J.
,
2016
, “
Robust Dimensional Variation Control of Compliant Assemblies Through the Application of Sheet Metal Joining Process Sequencing
,” The Australian National University, Canberra, Australia.
11.
Lindau
,
B.
,
Lindkvist
,
L.
,
Andersson
,
A.
, and
Söderberg
,
R.
,
2013
, “
Statistical Shape Modeling in Virtual Assembly Using PCA-Technique
,”
J. Manuf. Syst.
,
32
(
3
), pp.
456
463
.
12.
Wärmefjord
,
K.
,
Söderberg
,
R.
, and
Lindkvist
,
L.
,
2010
, “
Strategies for Optimization of Spot Welding Sequence With Respect to Geometrical Variation in Sheet Metal Assemblies
,”
ASME
Paper No. IMECE2010-38471.
13.
Larsson
,
S.
, and
Thomée
,
V.
,
2008
,
Partial Differential Equations With Numerical Methods
, Vol.
45
,
Springer Science & Business Media
, Berlin.
14.
Dahlström
,
S.
, and
Lindkvist
,
L.
,
2007
, “
Variation Simulation of Sheet Metal Assemblies Using the Method of Influence Coefficients With Contact Modeling
,”
ASME J. Manuf. Sci. Eng.
,
129
(
3
), pp.
615
622
.
15.
Xie
,
K.
,
Wells
,
L.
,
Camelio
,
J. A.
, and
Youn
,
B. D.
,
2007
, “
Variation Propagation Analysis on Compliant Assemblies Considering Contact Interaction
,”
ASME J. Manuf. Sci. Eng.
,
129
(
5
), pp.
934
942
.
16.
Wärmefjord
,
K.
,
Lindkvist
,
L.
, and
Söderberg
,
R.
,
2008
, “
Tolerance Simulation of Compliant Sheet Metal Assemblies Using Automatic Node-Based Contact Detection
,”
ASME
Paper No. IMECE2008-66344.
17.
Ungemach
,
G.
, and
Mantwill
,
F.
,
2009
, “
Efficient Consideration of Contact in Compliant Assembly Variation Analysis
,”
ASME J. Manuf. Sci. Eng.
,
131
(
1
), p.
011005
.
18.
Lindau
,
B.
,
Lorin
,
S.
,
Lindkvist
,
L.
, and
Söderberg
,
R.
,
2016
, “
Efficient Contact Modeling in Nonrigid Variation Simulation
,”
ASME J. Comput. Inf. Sci. Eng.
,
16
(
1
), p.
011002
.
19.
Lorin
,
S.
,
Lindau
,
B.
,
Lindkvist
,
L.
, and
Söderberg
,
R.
,
2017
, “
Non-Rigid Variation Simulation Using the Sherman-Morrison-Woodbury Formulas
,”
ASME
Paper No. IMECE2017-71456.
20.
Hager
,
W. W.
,
1989
, “
Updating the Inverse of a Matrix
,”
SIAM Rev.
,
31
(
2
), pp.
221
239
.
21.
Akgün
,
M. A.
,
Garcelon
,
J. H.
, and
Haftka
,
R. T.
,
2001
, “
Fast Exact Linear and Non-Linear Structural Reanalysis and the Sherman–Morrison–Woodbury Formulas
,”
Int. J. Numer. Methods Eng.
,
50
(
7
), pp.
1587
1606
.
22.
RD&T Technology AB
,
2017
, “
RD&T Software Manual
,”
RDT Technology AB
,
Mölndal, Sweden
, accessed Oct 19, 2018, http://www.rdnt.se
23.
Kirsch
,
U.
,
2010
, “
Reanalysis and Sensitivity Reanalysis by Combined Approximations
,”
Struct. Multidiscip. Optim.
,
40
(
1–6
), pp.
1
15
.
You do not currently have access to this content.