In this paper, the authors present Chebyshev finite element (CFE) method for the analysis of Reissner–Mindlin (RM) plates and shells. Chebyshev polynomials are a sequence of orthogonal polynomials that are defined recursively. The values of the polynomials belong to the interval [1,1] and vanish at the Gauss points (GPs). Therefore, high-order shape functions, which satisfy the interpolation condition at the points, can be performed with Chebyshev polynomials. Full gauss quadrature rule was used for stiffness matrix, mass matrix and load vector calculations. Static and free vibration analyses of thick and thin plates and shells of different shapes subjected to different boundary conditions were conducted. Both regular and irregular meshes were considered. The results showed that by increasing the order of the shape functions, CFE automatically overcomes shear locking without the formation of spurious zero energy modes. Moreover, the results of CFE are in close agreement with the exact solutions even for coarse and irregular meshes.

References

References
1.
Abassian, F.
,
Haswell, D. J.
, and
Knowles, N. C.
, 1987, “
Free Vibration Benchmarks
,” National Agency for Finite Element Methods and Standards, Glasgow, UK.
2.
Al-Bermani
,
F. G. A.
, and
Liew
,
K. M.
,
1996
, “
Natural Frequencies of Thick Arbitrary Quadrilateral Plates Using the pb–2 Ritz Method
,”
J. Sound Vib.
,
196
(
4
), pp.
371
385
.
3.
Ayad
,
R.
,
Dhatt
,
G.
, and
Batoz
,
J. L.
,
1998
, “
A New Hybrid-Mixed Variational Approach for Reissner–Mindlin Plates. The MiSP Model
,”
Int. J. Numer. Methods Eng.
,
42
(
7
), pp.
1149
1179
.
4.
Irie
,
T.
,
Yamada
,
G.
, and
Aomura
,
S.
,
1980
, “
Natural Frequencies of Mindlin Circular Plates
,”
ASME J. Appl. Mech.
,
47
(
3
), pp.
652
655
.
5.
Taylor
,
R. L.
, and
Auricchio
,
F.
,
1993
, “
Linked Interpolation for Reissner-Mindlin Plate Elements—Part II: A Simple Triangle
,”
Int. J. Numer. Methods Eng.
,
36
(
18
), pp.
3057
3066
.
6.
Timoshenko
,
S.
, and
Woinowsky-Krieger
,
S.
,
1959
,
Theory of Plates and Shells
(
Engineering Societies Monographs
),
McGraw-Hill
, New York.
7.
Szilard
,
R.
,
2004
,
Theories and Applications of Plate Analysis: Classical Numerical and Engineering Methods
,
Wiley
, Hoboken, NJ.
8.
Clough
,
R. W.
,
1960
,
The Finite Element Method in Plane Stress Analysis
,
American Society of Civil Engineers
, Reston, VA.
9.
Love
,
A. E. H.
,
1888
, “
The Small Free Vibrations and Deformation of a Thin Elastic Shell
,”
Philos. Trans. R. Soc. London
,
179
, pp. 491–546.https://www.jstor.org/stable/90527
10.
Mindlin
,
R. D.
,
1951
, “
Influence of Rotatory Inertia and Shear on Flexural Motions of Isotropic Elastic Pates
,”
ASME J. Appl. Mech.
,
18
, pp.
31
38
.
11.
Reissner
,
E.
,
1945
, “
The Effect of Transverse Shear Deformation on the Bending of Elastic Plates
,”
ASME J. Appl. Mech.
,
12
, pp.
A68
A77
.
12.
Zienkiewicz
,
O. C.
, and
Taylor
,
R. L.
,
2000
,
The Finite Element Method: Solid Mechanics
,
Butterworth-Heinemann
, Oxford, UK.
13.
Bathe
,
K.-J.
, and
Dvorkin
,
E. N.
,
1986
, “
A Formulation of General Shell Elements—The Use of Mixed Interpolation of Tensorial Components
,”
Int. J. Numer. Methods Eng.
,
22
(
3
), pp.
697
722
.
14.
Ko
,
Y.
,
Lee
,
P.-S.
, and
Bathe
,
K.-J.
,
2016
, “
The MITC4+ Shell Element and Its Performance
,”
Comput. Struct.
,
169
, pp.
57
68
.
15.
Bathe
,
K.-J.
,
Lee
,
P.-S.
, and
Hiller
,
J.-F.
,
2003
, “
Towards Improving the MITC9 Shell Element
,”
Comput. Struct.
,
81
(
8–11
), pp.
477
489
.
16.
Bucalem
,
M. L.
, and
Bathe
,
K.-J.
,
1993
, “
Higher-Order MITC General Shell Elements
,”
Int. J. Numer. Methods Eng.
,
36
(
21
), pp.
3729
3754
.
17.
Beirão da Veiga
,
L.
,
Chapelle
,
D.
, and
Paris Suarez
,
I.
,
2007
, “
Towards Improving the MITC6 Triangular Shell Element
,”
Comput. Struct.
,
85
(
21–22
), pp.
1589
1610
.
18.
Bathe
,
K.-J.
,
Brezzi
,
F.
, and
Cho
,
S. W.
,
1989
, “
The MITC7 and MITC9 Plate Bending Elements
,”
Comput. Struct.
,
32
(
3–4
), pp.
797
814
.
19.
Bletzinger
,
K.-U.
,
Bischoff
,
M.
, and
Ramm
,
E.
,
2000
, “
A Unified Approach for Shear-Locking-Free Triangular and Rectangular Shell Finite Elements
,”
Comput. Struct.
,
75
(
3
), pp.
321
334
.
20.
Tessler
,
A.
, and
Hughes
,
T. J. R.
,
1985
, “
A Three-Node Mindlin Plate Element With Improved Transverse Shear
,”
Comput. Methods Appl. Mech. Eng.
,
50
(
1
), pp.
71
101
.
21.
Tessler
,
A.
, and
Hughes
,
T. J. R.
,
1983
, “
An Improved Treatment of Transverse Shear in the Mindlin-Type Four-Node Quadrilateral Element
,”
Comput. Methods Appl. Mech. Eng.
,
39
(
3
), pp.
311
335
.
22.
Zrahia
,
U.
, and
Bar-Yoseph
,
P.
,
1995
, “
Plate Spectral Elements Based Upon Reissner–Mindlin Theory
,”
Int. J. Numer. Methods Eng.
,
38
(
8
), pp.
1341
1360
.
23.
Brito
,
K. D.
, and
Sprague
,
M. A.
,
2012
, “
Reissner–Mindlin Legendre Spectral Finite Elements With Mixed Reduced Quadrature
,”
Finite Elem. Anal. Des.
,
58
, pp.
74
83
.
24.
Sprague
,
M. A.
, and
Purkayastha
,
A.
,
2015
, “
Legendre Spectral Finite Elements for Reissner–Mindlin Composite Plates
,”
Finite Elem. Anal. Des.
,
105
, pp.
33
43
.
25.
Tchébychev, M. P.
, 1954, “
Théorie des mécanismes connus sous le nom de parallélogrammes
,” Mémoires des Savants étrangers présentés à l'Académie de Saint-Pétersbourg,
7
, pp. 539–586.
26.
Patera
,
A. T.
,
1984
, “
A Spectral Element Method for Fluid Dynamics: Laminar Flow in a Channel Expansion
,”
J. Comput. Phys.
,
54
(
3
), pp.
468
488
.
27.
Canuto
,
C.
,
Quarteroni
,
A.
,
Hussaini
,
M. Y.
, and
Zang
,
T. A.
,
2012
, “
Spectral Methods in Fluid Dynamics
,” Springer, New York.
28.
Deville
,
M. O.
,
1990
, “
Chebyshev Collocation Solutions of Flow Problems
,”
Comput. Methods Appl. Mech. Eng.
,
80
(
1–3
), pp.
27
37
.
29.
Lee-Wing
,
H.
, and
Patera
,
A. T.
,
1990
, “
A Legendre Spectral Element Method for Simulation of Unsteady Incompressible Viscous Free-Surface Flows
,”
Comput. Methods Appl. Mech. Eng.
,
80
(
1–3
), pp.
355
366
.
30.
Komatitsch
,
D.
,
Vilotte
,
J.-P.
,
Vai
,
R.
,
Castillo-Covarrubias
,
J. M.
, and
Sánchez-Sesma
,
F. J.
,
1999
, “
The Spectral Element Method for Elastic Wave Equations—Application to 2-D and 3-D Seismic Problems
,”
Int. J. Numer. Methods Eng.
,
45
(
9
), pp.
1139
1164
.
31.
Seriani
,
G.
,
1998
, “
3-D Large-Scale Wave Propagation Modeling by Spectral Element Method on Cray T3E Multiprocessor
,”
Comput. Methods Appl. Mech. Eng.
,
164
(
1–2
), pp.
235
247
.
32.
Seriani
,
G.
,
1997
, “
A Parallel Spectral Element Method for Acoustic Wave Modeling
,”
J. Comput. Acoust.
,
5
(
1
), pp.
53
69
.
33.
Dauksher
,
W.
, and
Emery
,
A. F.
,
1997
, “
Accuracy in Modeling the Acoustic Wave Equation With Chebyshev Spectral Finite Elements
,”
Finite Elem. Anal. Des.
,
26
(
2
), pp.
115
128
.
34.
Seriani
,
G.
, and
Priolo
,
E.
,
1994
, “
Spectral Element Method for Acoustic Wave Simulation in Heterogeneous Media
,”
Finite Elem. Anal. Des.
,
16
(
3–4
), pp.
337
348
.
35.
Seriani
,
G.
,
Priolo
,
E.
,
Carcione
,
J.
, and
Padovani
,
E.
,
1992
, “
High-Order Spectral Element Method for Elastic Wave Modeling
,”
SEG Technical Program Expanded Abstracts 1992
, Society of Exploration Geophysicists, Tulsa, OK, pp.
1285
1288
.
36.
Nguyen
,
H. D.
,
Paik
,
S.
, and
Douglass
,
R. W.
,
1997
, “
A Legendre-Spectral Element Method for Flow and Heat Transfer About an Accelerating Droplet
,”
J. Sci. Comput.
,
12
, pp.
75
97
.
37.
Spall
,
R.
,
1995
, “
Spectral Collocation Methods for One-Dimensional Phase-Change Problems
,”
Int. J. Heat Mass Transfer
,
38
(
15
), pp.
2743
2748
.
38.
Dauksher
,
W.
, and
Emery
,
A. F.
,
2000
, “
The Solution of Elastostatic and Elastodynamic Problems With Chebyshev Spectral Finite Elements
,”
Comput. Methods Appl. Mech. Eng.
,
188
(
1–3
), pp.
217
233
.
39.
Lee
,
U.
,
2009
,
Spectral Element Method in Structural Dynamics
,
Wiley
, Singapore.
40.
Liu
,
G. R.
, and
Quek
,
S. S.
,
2003
,
Finite Element Method: A Practical Course
,
Butterworth-Heinemann
,
Oxford, UK
, pp.
1
11
.
41.
Nguyen-Thoi
,
T.
,
Phung-Van
,
P.
,
Thai-Hoang
,
C.
, and
Nguyen-Xuan
,
H.
,
2013
, “
A Cell-Based Smoothed Discrete Shear Gap Method (CS-DSG3) Using Triangular Elements for Static and Free Vibration Analyses of Shell Structures
,”
Int. J. Mech. Sci.
,
74
, pp.
32
45
.
42.
Fornberg
,
B.
, and
Zuev
,
J.
,
2007
, “
The Runge Phenomenon and Spatially Variable Shape Parameters in RBF Interpolation
,”
Comput. Math. Appl.
,
54
(3), pp. 379–398.
43.
Nguyen-Thoi
,
M. H.
,
Le-Anh
,
L.
,
Ho-Huu
,
V.
,
Dang-Trung
,
H.
, and
Nguyen-Thoi
,
T.
,
2015
, “
An Extended Cell-Based Smoothed Discrete Shear Gap Method (XCS-FEM-DSG3) for Free Vibration Analysis of Cracked Reissner-Mindlin Shells
,”
Front. Struct. Civ. Eng.
,
9
(
4
), pp.
341
358
.
44.
Nguyen-Thoi
,
T.
,
Phung-Van
,
P.
,
Nguyen-Xuan
,
H.
, and
Thai-Hoang
,
C.
,
2012
, “
A Cell-Based Smoothed Discrete Shear Gap Method Using Triangular Elements for Static and Free Vibration Analyses of Reissner–Mindlin Plates
,”
Int. J. Numer. Methods Eng.
,
91
(
7
), pp.
705
741
.
45.
Hiller
,
J.-F.
, and
Bathe
,
K.-J.
,
2003
, “
Measuring Convergence of Mixed Finite Element Discretizations: An Application to Shell Structures
,”
Comput. Struct.
,
81
(
8–11
), pp.
639
654
.
46.
Bathe
,
K.-J.
,
2014
,
Finite Element Procedures
. Prentice Hall, Upper Saddle River, NJ.
47.
Chapelle
,
D.
, and
Bathe
,
K.-J.
,
2011
,
The Finite Element Analysis of Shells—Fundamentals
, Springer-Verlag, Berlin.
48.
Nguyen-Xuan
,
H.
,
Rabczuk
,
T.
,
Bordas
,
S.
, and
Debongnie
,
J. F.
,
2008
, “
A Smoothed Finite Element Method for Plate Analysis
,”
Comput. Methods Appl. Mech. Eng.
,
197
(
13–16
), pp.
1184
1203
.
49.
Rao
,
H. V. S. G.
, and
Chaudhary
,
V. K.
,
1988
, “
Analysis of Skew and Triangular Plates in Bending
,”
Comput. Struct.
,
28
(
2
), pp.
223
235
.
50.
Morley
,
L. S. D.
,
1962
, “
Bending of a Simply Supported Rhombic Plate Under Uniform Normal Loading
,”
Q. J. Mech. Appl. Math.
,
15
(
4
), pp.
413
426
.
51.
Häggblad
,
B.
, and
Bathe
,
K.-J.
,
1990
, “
Specifications of Boundary Conditions for Reissner/Mindlin Plate Bending Finite Elements
,”
Int. J. Numer. Methods Eng.
,
30
(
5
), pp.
981
1011
.
52.
Leissa
,
A. W.
,
1969
, “
Vibration of Plates
,” Ohio State University, Columbus, OH, p.
362
.
53.
Lee
,
S. J.
,
2004
, “
Free Vibration Analysis of Plates by Using a Four-Node Finite Element Formulated With Assumed Natural Transverse Shear Strain
,”
J. Sound Vib.
,
278
(
3
), pp.
657
684
.
54.
Shi
,
X.
,
Shi
,
D.
,
Li
,
W. L.
, and
Wang
,
Q.
,
2014
, “
A Unified Method for Free Vibration Analysis of Circular, Annular and Sector Plates With Arbitrary Boundary Conditions
,”
J. Vib. Control
,
22
(
2
), pp.
442
456
.
55.
Shojaee
,
S.
,
Izadpanah
,
E.
,
Valizadeh
,
N.
, and
Kiendl
,
J.
,
2012
, “
Free Vibration Analysis of Thin Plates by Using a NURBS-Based Isogeometric Approach
,”
Finite Elem. Anal. Des.
,
61
, pp.
23
34
.
56.
Krysl
,
P.
, and
Belytschko
,
T.
,
1996
, “
Analysis of Thin Shells by the Element-Free Galerkin Method
,”
Int. J. Solids Struct.
,
33
(
20–22
), pp.
3057
3080
.
57.
Noguchi
,
H.
,
Kawashima
,
T.
, and
Miyamura
,
T.
,
2000
, “
Element Free Analyses of Shell and Spatial Structures
,”
Int. J. Numer. Methods Eng.
,
47
(
6
), pp.
1215
1240
.
58.
Liew
,
K. M.
,
Peng
,
L. X.
, and
Ng
,
T. Y.
,
2002
, “
Three-Dimensional Vibration Analysis of Spherical Shell Panels Subjected to Different Boundary Conditions
,”
Int. J. Mech. Sci.
,
44
(
10
), pp.
2103
2117
.
You do not currently have access to this content.