Optimal layouts for structural design have been generated using topology optimization approach with a wide variety of objectives and constraints. Minimization of compliance is the most common objective but the resultant structures often have stress concentrations. Two new objective functions, constructed using an upper bound of von Mises stress, are presented here for computing design concepts that avoid stress concentration. The first objective function can be used to minimize mass while ensuring that the design is conservative and avoids stress concentrations. The second objective can be used to tradeoff between maximizing stiffness versus minimizing the maximum stress to avoid stress concentration. The use of the upper bound of von Mises stress is shown to avoid singularity problems associated with stress-based topology optimization. A penalty approach is used for eliminating stress concentration and stress limit violations which ensures conservative designs while avoiding the need for special algorithms for handling stress localization. In this work, shape and topology are represented using a density function with the density interpolated piecewise over the elements to obtain a continuous density field. A few widely used examples are utilized to study these objective functions.

References

References
1.
Bendsøe
,
M. P.
, and
Kikuchi
,
N.
,
1988
, “
Generating Optimal Topologies in Structural Design Using a Homogenization Method
,”
Comput. Methods Appl. Mech. Eng.
,
71
(
2
), pp.
197
224
.
2.
Bendsøe
,
M. P.
,
1989
, “
Optimal Shape Design as a Material Distribution Problem
,”
Struct. Multidiscip. Optim.
,
1
(
4
), pp.
193
202
.
3.
Rozvany
,
G. I. N.
,
Zhou
,
M.
, and
Birker
,
T.
,
1992
, “
Generalized Shape Optimization Without Homogenization
,”
Struct. Multidiscip. Optim.
,
4
(
3–4
), pp.
250
254
.
4.
Kumar
,
A. V.
, and
Gossard
,
D. C.
,
1996
, “
Synthesis of Optimal Shape and Topology of Structures
,”
ASME J. Mech. Des.
,
118
(
1
), pp.
68
74
.
5.
Wang
,
M. Y.
,
Wang
,
X.
, and
Guo
,
D.
,
2003
, “
A Level Set Method for Structural Topology Optimization
,”
Comput. Methods Appl. Mech. Eng.
,
192
(
1–2
), pp.
227
246
.
6.
Allaire
,
G.
,
Jouve
,
F.
, and
Toader
,
A.
,
2004
, “
Structural Optimization Using Sensitivity Analysis and a Level-Set Method
,”
J. Comput. Phys.
,
194
(
1
), pp.
363
393
.
7.
Burger
,
M.
,
Hackl
,
B.
, and
Ring
,
W.
,
2004
, “
Incorporating Topological Derivatives Into Level Set Methods
,”
J. Comput. Phys.
,
194
(
1
), pp.
344
362
.
8.
Chapman
,
C. D.
,
Saitou
,
K.
, and
Jakiela
,
M. J.
,
1994
, “
Genetic Algorithm as an Approach to Configuration and Topology Design
,”
ASME J. Mech. Des.
,
116
(
4
), pp.
1005
1012
.
9.
Wang
,
S. Y.
, and
Tai
,
K.
,
2005
, “
Structural Topology Design Optimization Using Genetic Algorithms With a Bit-Array Representation
,”
Comput. Methods Appl. Mech. Eng.
,
194
(
36–38
), pp.
3749
3770
.
10.
Eschenauer
,
H. A.
,
Kobelev
,
V. V.
, and
Schumacher
,
A.
,
1994
, “
Bubble Method for Topology and Shape Optimization of Structures
,”
Struct. Optim.
,
8
(
1
), pp.
42
51
.
11.
Amstutz
,
S.
, and
Novotny
,
A. A.
,
2010
, “
Topological Optimization of Structures Subject to Von Mises Stress Constraints
,”
Struct. Multidiscip. Optim.
,
41
(
3
), pp.
407
420
.
12.
Turevsky
,
I.
, and
Suresh
,
K.
,
2011
, “
Efficient Generation of Pareto-Optimal Topologies for Compliance Optimization
,”
Int. J. Numer. Methods Eng.
,
87
(
12
), pp.
1207
1228
.
13.
Yang
,
R. J.
, and
Chen
,
C. J.
,
1996
, “
Stress-Based Topology Optimization
,”
Struct. Multidiscip. Optim.
,
12
(
2–3
), pp.
98
105
.
14.
Kreisselmeier
,
G.
, and
Steinhauser
,
R.
,
1979
, “
Systematic Control Design by Optimizing a Vector Performance Index
,”
IFAC Symposium on Computer-Aided Design of Control Systems
, Zurich, Switzerland, pp.
113
117
.
15.
Duysinx
,
P.
, and
Bendsøe
,
M.
,
1998
, “
Topology Optimization of Continuum Structures With Local Stress Constraints
,”
Int. J. Numer. Methods Eng.
,
43
(
8
), pp.
1453
1478
.https://doi.org/10.1002/(SICI)1097-0207(19981230)43:8%3C1453::AID-NME480%3E3.0.CO;2-2
16.
Pereira
,
J. T.
,
Fancello
,
E. A.
, and
Barcello
,
C. S.
,
2004
, “
Topology Optimization of Continuum Structures With Material Failure Constraints
,”
Struct. Multidiscip. Optim.
,
26
(
1–2
), pp.
50
66
.
17.
Bruggi
,
M.
, and
Venini
,
P.
,
2008
, “
A Mixed FEM Approach to Stress-Constrained Topology Optimization
,”
Int. J. Numer. Methods Eng.
,
73
(
12
), pp.
1693
1714
.
18.
Cheng
,
G. D.
, and
Jiang
,
Z.
,
1992
, “
Study on Topology Optimization With Stress Constraints
,”
Eng. Optim.
,
20
(
2
), pp.
129
148
.
19.
Kirsch
,
U.
,
1990
, “
On Singular Topologies in Optimum Structural Design
,”
Struct. Multidiscip. Optim.
,
2
(
3
), pp.
133
142
.https://link.springer.com/article/10.1007/BF01836562
20.
Cheng
,
G. D.
, and
Guo
,
X.
,
1997
, “
ε-Relaxed Approach in Structural Topology Optimization
,”
Struct. Multidiscip. Optim.
,
13
(
4
), pp.
258
266
.https://link.springer.com/article/10.1007/BF01197454
21.
Guilherme
,
C. E. M.
, and
Fonseca
,
J. S. O.
,
2007
, “
Topology Optimization of Continuum Structures With Epsilon-Relaxed Stress Constraints
,”
Solid Mechanics in Brazil
, Vol.
1
,
M.
Alves
and
H. S.
da Costa Mattos
, eds.,
ABCM
,
Rio de Janeiro, Brazil
, pp.
239
250
.
22.
Bruggi
,
M.
,
2008
, “
On an Alternative Approach to Stress Constraints Relaxation in Topology Optimization
,”
Struct. Multidiscip. Optim.
,
36
(
2
), pp.
125
141
.
23.
Le
,
C.
,
Norato
,
J.
,
Bruns
,
T.
,
Ha
,
C.
, and
Tortorelli
,
D.
,
2010
, “
Stress-Based Topology Optimization for Continua
,”
Struct. Multidiscip. Optim.
,
41
(
4
), pp.
605
620
.
24.
París
,
J.
,
Navarrina
,
F.
,
Colominas
,
I.
, and
Casteleiro
,
M.
,
2010
, “
Block Aggregation of Stress Constraints in Topology Optimization of Structures
,”
Adv. Eng. Software
,
41
(
3
), pp.
433
441
.
25.
Luo
,
Y.
,
Wang
,
M. Y.
, and
Kang
,
Z.
,
2013
, “
An Enhanced Aggregation Method for Topology Optimization With Local Stress Constraints
,”
Comput. Methods Appl. Mech. Eng.
,
254
, pp.
31
41
.
26.
Rong
,
J. H.
,
Xiao
,
T. T.
,
Yu
,
L. H.
,
Rong
,
X. P.
, and
Xie
,
Y. J.
,
2016
, “
Continuum Structural Topological Optimizations With Stress Constraints Based on Active Constraint Technique
,”
Int. J. Numer. Methods Eng.
,
108
(
4
), pp.
326
360
.https://doi.org/10.1002/nme.5234
27.
Bruggi
,
M.
, and
Duysinx
,
P.
,
2012
, “
Topology Optimization for Minimum Weight and Stress Constraints
,”
Struct. Multidiscip. Optim.
,
46
(
3
), pp.
369
384
.
28.
Guo
,
X.
,
Zhang
,
W. S.
,
Wang
,
M. Y.
, and
Wei
,
P.
,
2011
, “
Stress-Related Topology Optimization Via Level Set Approach
,”
Comput. Methods Appl. Mech. Eng.
,
200
(
47–48
), pp.
3439
3452
.
29.
Zhang
,
W. S.
,
Guo
,
X.
,
Wang
,
M. Y.
, and
Wei
,
P.
,
2013
, “
Optimal Topology Design of Continuum Structures With Stress Concentration Alleviation Via Level Set Method
,”
Int. J. Numer. Methods
,
93
(
9
), pp.
942
959
.https://doi.org/10.1002/nme.4416
30.
Wang
,
M.
, and
Li
,
L.
,
2013
, “
Shape Equilibrium Constraint: A Strategy for Stress-Constrained Structural Topology Optimization
,”
Struct. Multidiscip. Optim.
,
47
(
3
), pp.
335
352
.
31.
Jeong
,
S. H.
,
Park
,
S. H.
,
Choi
,
D. H.
, and
Yoon
,
G. H.
,
2012
, “
Topology Optimization Considering Static Failure Theories for Ductile and Brittle Materials
,”
Comput. Struct.
,
110–111
, pp.
116
132
.https://doi.org/10.1016/j.compstruc.2012.07.007
32.
Luo
,
Y.
, and
Kang
,
Z.
,
2012
, “
Topology Optimization of Continuum Structures With Drucker–Prager Yield Stress Constraints
,”
Comput. Struct.
,
90–91
, pp.
65
75
.
33.
Takezawa
,
A.
,
Yoon
,
G. H.
,
Jeong
,
S. H.
,
Kobashi
,
M.
, and
Kitamura
,
M.
,
2014
, “
Structural Topology Optimization With Strength and Heat Conduction Constraints
,”
Comput. Methods Appl. Mech. Eng.
,
276
, pp.
341
361
.
34.
Bendsøe
,
M. P.
, and
Sigmund
,
O.
,
2003
,
Topology Optimization: Theory, Methods and Applications
,
Springer
,
New York
.
35.
Matsui
,
K.
, and
Terada
,
K.
,
2004
, “
Continuous Approximation of Material Distribution for Topology Optimization
,”
Int. J. Numer. Methods Eng.
,
59
(
14
), pp.
1925
1944
.
36.
Kumar
,
A. V.
, and
Parthasarathy
,
A.
,
2011
, “
Topology Optimization Using B-Spline Finite Elements
,”
Struct. Multidiscip. Optim.
,
44
(
4
), pp.
471
481
.
37.
Bruns
,
T. E.
, and
Tortorelli
,
D. A.
,
2001
, “
Topology Optimization of Non-Linear Elastic Structures and Compliant Mechanisms
,”
Comput. Methods Appl. Mech. Eng.
,
190
(
26–27
), pp.
3443
3459
.https://doi.org/10.1016/S0045-7825(00)00278-4
38.
Bourdin
,
B.
,
2001
, “
Filters in Topology Optimization
,”
Int. J. Numer. Methods Eng.
,
50
(
9
), pp.
2143
2158
.
39.
Guest
,
J. K.
,
Prévost
,
J.
, and
Belytschko
,
T.
,
2004
, “
Achieving Minimum Length Scale in Topology Optimization Using Nodal Design Variables and Projection Functions
,”
Int. J. Numer. Methods Eng.
,
61
(
2
), pp.
238
254
.
40.
Verbart
,
A.
,
Langehaar
,
M.
, and
van Keulen
,
F.
,
2017
, “
A Unified Aggregation and Relaxation Approach for Stress-Constrained Topology Optimization
,”
Struct. Multidiscip. Optim.
,
55
(
2
), pp.
663
679
.
41.
Bendsøe
,
M. P.
,
Diaz
,
A.
, and
Kikuchi
,
N.
,
1993
, “
Topology and Generalized Layout Optimization of Elastic Structures
,”
Topology Design of Structures
,
M. P.
Bendsøe
and
C. A.
Mota Soares
, eds.,
Kluwer Academic Publishers
, Dordrecht,
The Netherlands
, pp.
159
205
.
42.
Bertsekas
,
D. P.
,
1999
,
Nonlinear Programming
,
2nd ed.
,
Athena Scientific
,
Belmont, MA
.
43.
Sigmund
,
O.
, and
Petersson
,
J.
,
1998
, “
Numerical Instabilities in Topology Optimization: A Survey on Procedures Dealing With Checkerboards, Mesh-Dependencies and Local Minima
,”
Struct. Multidiscip. Optim.
,
16
(
1
), pp.
68
75
.https://doi.org/10.1007/BF01214002
44.
Haber
,
R. B.
,
Jog
,
C. S.
, and
Bendsoe
,
M. P.
,
1996
, “
A New Approach to Variable-Topology Shape Design Using a Constraint on the Perimeter
,”
Struct. Optim.
,
11
(
1–2
), pp.
1
12
.https://doi.org/10.1007/BF01279647
45.
Yamada
,
T.
,
Izui
,
K.
,
Nishiwaki
,
S.
, and
Takezawa
,
A.
,
2010
, “
A Topology Optimization Method Based on the Level Set Method Incorporating a Fictitious Interface Energy
,”
Comput. Methods Appl. Mech. Eng.
,
199
(
45–48
), pp.
2876
2891
.
46.
Haug
,
E. J.
,
Choi
,
K. K.
, and
Komkov
,
V.
,
1986
,
Design Sensitivity Analysis of Structural Systems
(Mathematics in Science and Engineering Series),
Academic Press
, Orlando, FL.
47.
Kumar
,
A. V.
,
2000
, “
A Sequential Optimization Algorithm Using Logarithmic Barriers: Application to Structural Optimization
,”
ASME J. Mech. Des.
,
122
(
3
), pp.
271
277
.
You do not currently have access to this content.