Analyzing product online reviews has drawn much interest in the academic field. In this research, a new probabilistic topic model, called tag sentiment aspect models (TSA), is proposed on the basis of Latent Dirichlet allocation (LDA), which aims to reveal latent aspects and corresponding sentiment in a review simultaneously. Unlike other topic models which consider words in online reviews only, syntax tags are taken as visual information and, in this research, as a kind of widely used syntax information, part-of-speech (POS) tags are first reckoned. Specifically, POS tags are integrated into three versions of implementation in consideration of the fact that words with different POS tags might be utilized to express consumers' opinions. Also, the proposed TSA is one unsupervised approach and only a small number of positive and negative words are required to confine different priors for training. Finally, two big datasets regarding digital SLR and laptop are utilized to evaluate the performance of the proposed model in terms of sentiment classification and aspect extraction. Comparative experiments show that the new model can not only achieve promising results on sentiment classification but also leverage the performance on aspect extraction.

References

References
1.
O'Reilly
,
T.
,
2005
, “
What is Web 2.0
,” https://www.oreilly.com/pub/a/web2/archive/what-is-web-20.html
2.
Li
,
X.
,
Hitt
,
L. M.
, and
Zhang
,
Z. J.
,
2011
, “
Product Reviews and Competition in Markets for Repeat Purchase Products
,”
J. Manage. Inf. Syst.
,
27
(
4
), pp.
9
42
.
3.
Li
,
M.
,
Huang
,
L.
,
Tan
,
C.-H.
, and
Wei
,
K.-K.
,
2013
, “
Helpfulness of Online Product Reviews as Seen by Consumers: Source and Content Features
,”
Int. J. Electron. Commer.
,
17
(
4
), pp.
101
136
.
4.
Jin
,
J.
,
Ji
,
P.
, and
Liu
,
Y.
,
2016
, “
Prioritising Engineering Characteristics Based on Customer Online Reviews for Quality Function Deployment
,”
J. Eng. Des.
,
4828
(
7–9
), pp.
303
324
.
5.
Kangale
,
A.
,
Kumar
,
S. K.
,
Naeem
,
M. A.
,
Williams
,
M.
, and
Tiwari
,
M. K.
,
2016
, “
Mining Consumer Reviews to Generate Ratings of Different Product Attributes While Producing Feature-Based Review-Summary
,”
Int. J. Syst. Sci.
,
47
(
13
), pp.
3272
3286
.
6.
Moen
,
Ø.
,
Havro
,
L. J.
, and
Bjering
,
E.
,
2017
, “
Online Consumers Reviews: Examining the Moderating Effects of Product Type and Product Popularity on the Review Impact on Sales
,”
Cogent Bus. Manage.
,
4
(
1
), p.
1368114
.
7.
Hu
,
M.
, and
Liu
,
B.
,
2004
, “
Mining and Summarizing Customer Reviews
,” ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (
KDD '04)
, Seattle, WA, Aug. 22–25, p.
168
.
8.
Popescu
,
A. M.
, and
Etzioni
,
O.
,
2005
, “
Extracting Product Features and Opinions From Reviews
,” HLT '05 Conference on Human Language Technology and Empirical Methods in Natural Language Processing, Vancouver, BC, Canada, Oct. 6–8, pp.
339
346
.
9.
Blair-Goldensohn
,
S.
,
Hannan
,
K.
,
McDonald
,
R.
,
Neylon
,
T.
,
Reis
,
G. A.
, and
Reynar
,
J.
,
2008
, “
Building a Sentiment Summarizer for Local Service Reviews
,”
WWW Workshop on NLP in the Information Explosion Era
, Beijing, China, Apr. 21–25, pp.
339
348
.
10.
Lamar
,
C.
,
2010
, “
Linguistic Analysis of Natural Language Engineering Requirement Statements
,”
M.S. thesis
, Clemson University, Clemson, SC.https://tigerprints.clemson.edu/all_theses/671/
11.
Hein
,
P. H.
,
Voris
,
N.
, and
Morkos
,
B.
,
2017
, “
Predicting Requirement Change Propagation Through Investigation of Physical and Functional Domains
,”
Res. Eng. Des.
,
29
(
2
), pp.
309
328
.
12.
Turney
,
P. D.
,
2001
, “
Thumbs Up or Thumbs Down?
,”
40th Annual Meeting on Association for Computational Linguistics (ACL '02)
, Toulouse, France, July 6–11, p.
417
.
13.
Pang
,
B.
,
Lee
,
L.
, and
Vaithyanathan
,
S.
,
2002
, “
Sentiment Classification Using Machine Learning Techniques
,” Conference on Empirical Methods in Natural Language Processing (
EMNLP-2002
), Philadelphia, PA, July, pp.
79
86
.http://www.aclweb.org/anthology/W02-1011
14.
Pang
,
B.
, and
Lee
,
L.
,
2004
, “
A Sentimental Education: Sentiment Analysis Using Subjectivity Summarization Based on Minimum Cuts
,”
42nd Annual Meeting on Association for Computational Linguistics
, Barcelona, Spain, July 21–26, p.
271
.http://www.aclweb.org/anthology/P04-1035
15.
Blei
,
D. M.
,
Ng
,
A.
, and
Jordan
,
M.
,
2003
, “
Latent Dirichlet Allocation
,”
J. Mach. Learn. Res.
,
3
, pp.
993
1022
.https://dl.acm.org/citation.cfm?id=944937
16.
Blei
,
D. M.
, and
Lafferty
,
J. D.
,
2009
, “
Topic Models
,”
Text Mining: Theory and Applications
,
A. S. a. M.
Sahami
, ed.,
Taylor & Francis
,
New York
, pp.
101
124
.
17.
Griffiths
,
T. L.
,
Steyvers
,
M.
,
Blei
,
D. M.
, and
Tenenbaum
,
J. B.
,
2004
, “
Integrating Topics and Syntax
,”
Advances in Neural Information Processing Systems
, Vol.
17
, MIT Press, Cambridge, MA, pp.
537
544
.
18.
Whitelaw
,
C.
,
Garg
,
N.
, and
Argamon
,
S.
,
2005
, “
Using Appraisal Groups for Sentiment Analysis
,”
14th ACM International Conference on Information and Knowledge management (CIKM '05)
, Bremen, Germany, Oct. 31–Nov. 5, p.
625
.
19.
Jo
,
Y.
, and
Oh
,
A. H.
,
2011
, “
Aspect and Sentiment Unification Model for Online Review Analysis
,”
Fourth ACM International Conference on Web Search and Data mining (WSDM '11)
, Hong Kong, China, Feb. 9–12, p.
815
.
20.
Lin
,
C.
, and
He
,
Y.
,
2009
, “
Joint Sentiment/Topic Model for Sentiment Analysis
,”
18th ACM Conference on Information and Knowledge management (CIKM '09)
, Hong Kong, China, Nov. 2–6, p.
375
.
21.
Mei
,
M. W. H. S. C. Z. Q.
, and
Ling
,
X.
,
2007
, “
Topic Sentiment Mixture: Modeling Facets and Opinions in Weblogs
,”
World Wide Web Conference (WWW'07)
, Banff, AB, Canada, May 8–12, pp.
171
180
.
22.
Titov
,
I.
, and
McDonald
,
R.
,
2008
, “
A Joint Model of Text and Aspect Ratings for Sentiment Summarization
,” ACL-08 HLT, pp.
308
316
.
23.
Boyd-Graber
,
J.
, and
Blei
,
D. M.
, '
2009
, “
Syntactic Topic Models
,”
Advances in Neural Information Processing Systems
, Curran Associates, Whistler, BC, Canada, pp.
185
192
.
24.
Matsumoto
,
S.
,
Takamura
,
H.
, and
Okumura
,
M.
,
2005
, “
Sentiment Classification Using Word Sub-Sequences and Dependency Sub-Trees
,”
Pacific-Asia Conference on Knowledge Discovery and Data Mining
, Hanoi, Vietnam, May 18–20, pp.
301
311
.
25.
Ding
,
X.
,
Liu
,
B.
, and
Yu
,
P. S.
,
2008
, “
A Holistic Lexicon-Based Approach to Opinion Mining
,”
International Conference on Web Search and Web Data mining (WSDM '08)
, Palo Alto, CA, Feb. 11–12, p.
231
.
26.
Joshi
,
M.
, and
Penstein-Rosé
,
C.
,
2009
, “
Generalizing Dependency Features for Opinion Mining
,”
ACL-IJCNLP 2009 Conference Short Papers
, Suntec, Singapore, Aug. 4, p.
313
.
27.
Baccianella
,
S.
,
Esuli
,
A.
, and
Sebastiani
,
F.
,
2010
, “
SentiWordNet 3.0: An Enhanced Lexical Resource for Sentiment Analysis and Opinion Mining SentiWordNet
,”
Analysis
, 10(2010), pp.
1
12
.
28.
Esuli
,
A.
, and
Sebastiani
,
F.
,
2006
, “
SENTIWORDNET: A Publicly Available Lexical Resource for Opinion Mining
,”
Fifth Conference on Language Resources and Evaluation
, pp.
417
422
.
29.
Lu
,
Y.
,
Castellanos
,
M.
,
Dayal
,
U.
, and
Zhai
,
C.
,
2011
, “
Automatic Construction of a Context-Aware Sentiment Lexicon: An Optimization Approach
,”
20th International Conference on World Wide Web
, Hyderabad, India, Mar. 28–Apr. 1, pp.
347
356
.
30.
Hofmann
,
T.
,
2013
, “
Probabilistic Latent Semantic Analysis
,”
15th Conference on Uncertainty in Artificial Intelligence
, pp.
289
296
.
31.
Griffiths
,
T. L.
, and
Steyvers
,
M.
,
2004
, “
Finding Scientific Topics
,”
Proc. Natl. Acad. Sci.
,
101
(
Suppl. 1
), pp.
5228
5235
.
32.
Brody
,
S.
,
2010
, “
An Unsupervised Aspect-Sentiment Model for Online Reviews
,”
Computational Linguistics
, HLT '10 Human Language Technologies: The 2010 Annual Conference of the North American Chapter of the Association for Computational Linguistics, Los Angeles, CA, June 2–4, pp.
804
812
.
33.
Titov
,
I.
, and
McDonald
,
R.
,
2008
, “
Modeling Online Reviews With Multi-Grain Topic Models
,”
17th International Conference on World Wide Web (WWW '08)
, Beijing, China, Apr. 21–25, p.
111
.
34.
Zhao
,
W. X.
,
Jiang
,
J.
,
Yan
,
H.
, and
Li
,
X.
,
2010
, “
Jointly Modeling Aspects and Opinions With a MaxEnt-LDA Hybrid
,”
EMNLP '10
Conference on Empirical Methods in Natural Language Processing, Cambridge, MA, Oct. 9–11, pp.
56
65
.https://dl.acm.org/citation.cfm?id=1870664
35.
Wang
,
X.
, and
McCallum
,
A.
,
2006
, “
Topics Over Time: A Non-Markov Continuous-Time Model of Topical Trends
,”
12th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining
, Philadelphia, PA, Aug. 20–23, pp.
424
433
.
36.
Bach
,
N. X.
,
Linh
,
N. D.
, and
Phuong
,
T. M.
,
2018
, “
An Empirical Study on POS Tagging for Vietnamese Social Media Text
,”
Comput. Speech Lang.
,
50
, pp.
1
15
.
37.
Das
,
B. R.
,
Sahoo
,
S.
,
Panda
,
C. S.
, and
Patnaik
,
S.
,
2015
, “
Part of Speech Tagging in Odia Using Support Vector Machine
,”
Proc. Comput. Sci.
,
48
, pp.
507
512
.
38.
Zeroual
,
I.
,
Lakhouaja
,
A.
, and
Belahbib
,
R.
,
2017
, “
Towards a Standard Part of Speech Tagset for the Arabic Language
,”
J. King Saud Univ.-Comput. Inf. Sci.
,
29
(
2
), pp.
171
178
.
39.
Carneiro
,
H. C. C.
,
França
,
F. M. G.
, and
Lima
,
P. M. V.
,
2015
, “
Multilingual Part-of-Speech Tagging With Weightless Neural Networks
,”
Neural Networks
,
66
, pp.
11
21
.
40.
Carneiro
,
H. C. C.
,
Pedreira
,
C. E.
,
França
,
F. M. G.
, and
Lima
,
P. M. V.
,
2017
, “
A Universal Multilingual Weightless Neural Network Tagger Via Quantitative Linguistics
,”
Neural Networks
,
91
, pp.
85
101
.
41.
Barrett
,
N.
, and
Weber-Jahnke
,
J.
,
2014
, “
A Token Centric Part-of-Speech Tagger for Biomedical Text
,”
Artif. Intell. Med.
,
61
(
1
), pp.
11
20
.
42.
Wang
,
Y.
,
Wu
,
S.
,
Li
,
D.
,
Mehrabi
,
S.
, and
Liu
,
H.
,
2016
, “
A Part-of-Speech Term Weighting Scheme for Biomedical Information Retrieval
,”
J. Biomed. Inf.
,
63
, pp.
379
389
.
43.
Bravo-Marquez
,
F.
,
Frank
,
E.
, and
Pfahringer
,
B.
,
2016
, “
Building a Twitter Opinion Lexicon From Automatically-Annotated Tweets
,”
Knowl.-Based Syst.
,
108
, pp.
65
78
.
44.
Wang
,
G.
,
Zhang
,
Z.
,
Sun
,
J.
,
Yang
,
S.
, and
Larson
,
C. A.
,
2015
, “
POS-RS: A Random Subspace Method for Sentiment Classification Based on Part-of-Speech Analysis
,”
Inf. Process. Manage.
,
51
(
4
), pp.
458
479
.
45.
Liu
,
Y.
,
Jin
,
J.
,
Ji
,
P.
,
Harding
,
J. A.
, and
Fung
,
R. Y. K.
, 2013, “
Identifying Helpful Online Reviews: A Product Designer's Perspective
,”
Comput.-Aided Des.
,
45
(2), pp. 180–194.
46.
Zhang
,
R.
, and
Tran
,
T.
, 2010, “
A Novel Approach for Recommending Ranked User-Generated Reviews
,”
Advances in Artificial Intelligence
, Vol. 6085, Springer, Berlin, pp. 324–327.
47.
Fujimoto
,
K.
,
2011
, “
A Computational Account of Potency Differences in eWOM Messages Involving Subjective Rank Expressions
,”
IEEE/WIC/ACM International Conferences on Web Intelligence and Intelligent Agent Technology
, Lyon, France, Aug. 22–27, pp. 138–142.
48.
Siering
,
M.
,
Deokar
,
A. V.
, and
Janze
,
C.
,
2017
, “
Disentangling Consumer Recommendations: Explaining and Predicting Airline Recommendations Based on Online Reviews
,”
Neurocomputing
,
254
, pp.
33
41
.
49.
Xu
,
X.
,
Dutta
,
K.
, and
Ge
,
C.
,
2018
, “
Do Adjective Features From User Reviews Address Sparsity and Transparency in Recommender Systems?
,”
Electron. Commer. Res. Appl.
,
29
, pp.
113
123
.
50.
Li
,
L.
,
Qin
,
B.
,
Ren
,
W.
, and
Liu
,
T.
,
2017
, “
Document Representation and Feature Combination for Deceptive Spam Review Detection
,”
Neurocomputing
,
254
, pp.
33
41
.
51.
Hu
,
Y.-H.
,
Chen
,
K.
, and
Lee
,
P.-J.
,
2017
, “
The Effect of User-Controllable Filters on the Prediction of Online Hotel Reviews
,”
Inf. Manage.
,
54
(
6
), pp.
728
744
.
52.
Krestel
,
R.
, and
Dokoohaki
,
N.
,
2015
, “
Diversifying Customer Review Rankings
,”
Neural Networks
,
66
, pp.
36
45
.
53.
Lee
,
P.-J.
,
Hu
,
Y.-H.
, and
Lu
,
K.-T.
,
2018
, “
Assessing the Helpfulness of Online Hotel Reviews: A Classification-Based Approach
,”
Telematics Inf.
,
35
(
2
), pp.
436
445
.
54.
Porter
,
M. F.
,
2006
, “
An Algorithm of Suffix Stripping
,”
Program
,
14
(
3
), pp.
130
137
.https://dl.acm.org/citation.cfm?id=275705
55.
Turney
,
P. D.
, and
Littman
,
M. L.
,
2003
, “
Measuring Praise and Criticism
,”
ACM Trans. Inf. Syst.
,
21
(
4
), pp.
315
346
.
56.
Wallach
,
H. M.
,
2006
, “
Topic Modeling: Beyond Bag-of-Words
,”
International Conference on Machine Learning
, Pittsburgh, PA, pp.
977
984
.
57.
Wei
,
L.
, and
McCallum
,
A.
,
2006
, “
Pachinko Allocation: DAG-Structured Mixture Models of Topic Correlations
,” 23rd International Conference on Machine Learning (
ICML '06
), Pittsburgh, PA, pp.
577
584
.https://people.cs.umass.edu/~mccallum/papers/pam-icml06.pdf
58.
Davidov
,
D.
,
Tsur
,
O.
, and
Rappoport
,
A.
,
2010
, “
Semi-Supervised Recognition of Sarcastic Sentences in Twitter and Amazon
,”
14th Conference on Computational Natural Language Learning
, Uppsala, Sweden, July 15–16, pp.
107
116
.
You do not currently have access to this content.