Computer-aided tolerancing (CAT) aims to predict and control geometrical and dimensional deviations in the early design stage. Former simulation models based on the translation and rotation of nominal features cannot fulfill engineering demands or cover the product lifecycle. Nonideal feature-based simulation methods are, therefore, drawing a great deal of research attention. Two general problems for non-ideal feature-based methods are how to simulate manufacturing defects and how to integrate these defects into tolerance analysis. In this paper, we focus on the first problem. There are already many manufacturing defect simulation methods. Although they are derived from different fields and have different names, they share common characteristics in application. In this study, we collected different simulation methods and classified them as random noise methods, mesh morphing methods, and mode-based methods. The theoretical backgrounds of these methods are introduced, and the simulation examples are conducted on a consistency model to show their differences. Criteria such as multiscale, surface complexity, measurement data integration, parametric control, and calculation complexity are proposed to compare these methods. Based on these analyses, the advantages and drawbacks of each method are pointed out, which may help researchers and engineers to choose suitable methods for their work.

References

References
1.
Yassine
,
A.
, and
Braha
,
D.
,
2003
, “
Complex Concurrent Engineering and the Design Structure Matrix Method
,”
Concurr. Eng.
,
11
(
3
), pp.
165
176
.
2.
Geis
,
A.
,
Husung
,
S.
,
Oberänder
,
A.
, et al. .,
2015
, “
Use of Vectorial Tolerances for Direct Representation and Analysis in CAD-Systems
,”
Procedia CIRP
,
27
, pp.
230
240
.
3.
Desrochers
,
A.
, and
Clément
,
A.
,
1994
, “
A Dimensioning and Tolerancing Assistance Model for CAD/CAM Systems
,”
Int. J. Adv. Manuf. Technol.
,
9
(
6
), pp.
352
361
.
4.
Clément
,
A.
,
Desrochers
,
A.
, and
Riviere
,
A.
,
1991
, Theory and Practice of 3-D Tolerancing for Assembly,
École de Technologie Supérieure
.
5.
Teissandier
,
D.
,
Couetard
,
Y.
, and
Delos
,
V.
,
1999
, “
Operations on Polytopes: Application to Tolerance Analysis
,”
Global Consistency of Tolerances
,
Springer
, Berlin, pp.
425
434
.
6.
Schleich
,
B.
,
Anwer
,
N.
,
Zhu
,
Z.
,
Qiao
,
L.
,
Mathieu
,
L.
, and
Wartzack
,
S.
,
2014
, “
Comparative Study on Tolerance Analysis Approaches
,” International Symposium on Robust Design
(ISoRD'14)
, Copenhagen, Denmark, Aug., pp. 29–39. https://hal.archives-ouvertes.fr/hal-01094270/document
7.
Desrochers
,
A.
, and
Rivière
,
A.
,
1997
, “
A Matrix Approach to the Representation of Tolerance Zones and Clearances
,”
Int. J. Adv. Manuf. Technol.
,
13
(
9
), pp.
630
636
.
8.
Charpentier
,
F.
,
Ballu
,
A.
, and
Pailhes
,
J.
,
2011
, “
A Scientific Point of View of a Simple Industrial Tolerancing Process
,”
Procedia Eng.
, 21, p.
10
.
9.
Zou
,
Z.
, and
Morse
,
E. P.
,
2004
, “
A Gap-Based Approach to Capture Fitting Conditions for Mechanical Assembly
,”
Comput-Aided Des.
,
36
(
8
), pp.
691
700
.
10.
Anselmetti
,
B.
,
Mejbri
,
H.
, and
Mawussi
,
K.
,
2003
, “
Coupling Experimental Design—Digital Simulation of Junctions for the Development of Complex Tolerance Chains
,”
Comput. Ind.
,
50
(
3
), pp.
277
292
.
11.
Shen
,
Z.
,
Ameta
,
G.
,
Shah
,
J. J.
, and
Davidson
,
J. K.
,
2005
, “
A Comparative Study Of Tolerance Analysis Methods
,”
ASME J. Comput. Inf. Sci. Eng.
,
5
(
3
), p.
247
.
12.
Roy
,
U.
, and
Li
,
B.
,
1999
, “
Representation and Interpretation of Geometric Tolerances for Polyhedral Objects—II: Size, Orientation and Position Tolerances
,”
Comput-Aided Des.
,
31
(
4
), pp.
273
285
.
13.
Arroyave-Tobón
,
S.
,
Teissandier
,
D.
, and
Delos
,
V.
,
2017
, “
Applying Screw Theory for Summing Sets of Constraints in Geometric Tolerancing
,”
Mech. Mach. Theory
,
112
, pp.
255
271
.
14.
Ballu
,
A.
,
Mathieu
,
L.
, and
Dantan
,
J.-Y.
,
2015
, “
Formal Language for GeoSpelling
,”
ASME J. Comput. Inf. Sci. Eng.
,
15
(
2
), p.
021009
.
15.
Mathieu
,
L.
, and
Ballu
,
A.
,
2003
, “
GEOSPELLING: A Common Language for Specification and Verification to Express Method Uncertainty
,”
Eighth CIRP Seminar on Computer Aided Tolerancing
, Charlotte, NC, pp.
28
29
.
16.
Zhang
,
M.
,
Shi
,
Z.
,
Mathieu
,
L.
,
Nabil
,
A.
, and
Yang
,
J.
,
2015
, “
Geometric Product Specification of Gears: The GeoSpelling Perspective
,”
Procedia CIRP
,
27
, pp.
90
96
.
17.
Ballu
,
A.
, and
Mathieu
,
L.
,
1996
, “
Univocal Expression of Functional and Geometrical Tolerances for Design, Manufacturing and Inspection
,”
Computer-Aided Tolerancing
,
F.
Kimura
, ed.,
Springer
,
Dordrecht, The Netherlands
, pp.
31
46
.
18.
Anwer
,
N.
,
Ballu
,
A.
, and
Mathieu
,
L.
,
2013
, “
The Skin Model, a Comprehensive Geometric Model for Engineering Design
,”
CIRP Ann. Manuf. Technol.
,
62
(
1
), pp.
143
146
.
19.
Schleich
,
B.
,
Anwer
,
N.
,
Mathieu
,
L.
, and
Wartzack
,
S.
,
2014
, “
Skin Model Shapes: A New Paradigm Shift for Geometric Variations Modelling in Mechanical Engineering
,”
Comput-Aided Des.
,
50
, pp.
1
15
.
20.
Zhang
,
M.
,
Anwer
,
N.
,
Stockinger
,
A.
,
Mathieu
,
L.
, and
Wartzack
,
S.
,
2013
, “
Discrete Shape Modeling for Skin Model Representation
,”
Proc. Inst. Mech. Eng. Part B
,
227
(
5
), pp.
672
680
.
21.
Anwer
,
N.
,
Schleich
,
B.
,
Mathieu
,
L.
, and
Wartzack
,
S.
,
2014
, “
From Solid Modelling to Skin Model Shapes: Shifting Paradigms in Computer-Aided Tolerancing
,”
CIRP Ann. Manuf. Technol.
,
63
(
1
), pp.
137
140
.
22.
Schleich
,
B.
,
Wartzack
,
S.
,
Anwer
,
N.
, and
Mathieu
,
L.
,
2015
, “
Skin Model Shapes: Offering New Potentials for Modelling Product Shape Variability
,”
ASME
Paper No. DETC2015-46701.
23.
Schleich
,
B.
,
Anwer
,
N.
,
Mathieu
,
L.
, and
Wartzack
,
S.
,
2016
, “
Status and Prospects of Skin Model Shapes for Geometric Variations Management
,”
Procedia CIRP
,
43
, pp.
154
159
.
24.
Zhang
,
Z.
,
Zhang
,
Z.
,
Jin
,
X.
, and
Zhang
,
Q.
,
2018
, “
A Novel Modelling Method of Geometric Errors for Precision Assembly
,”
Int. J. Adv. Manuf. Technol.
,
94
(
1–4
), pp.
1139
1160
.
25.
Lalehpour
,
A.
, and
Barari
,
A.
,
2017
, “
Developing Skin Model in Coordinate Metrology Using a Finite Element Method
,”
Measurement
,
109
, pp.
149
159
.
26.
Lacroix
,
C.
,
Mathieu
,
L.
,
Thiébaut
,
F.
, et al. 
2015
, “
Numerical Process Based on Measuring Data for Gap Prediction of an Assembly
,”
Procedia CIRP
,
27
, pp.
97
102
.
27.
Zhang
,
X.
,
Zhang
,
H.
,
He
,
X.
, and
Xu
,
M.
,
2015
, “
Fast Evaluation of Minimum Zone Form Errors of Freeform NURBS Surfaces
,”
Procedia CIRP
,
27
, pp.
23
28
.
28.
Franciosa
,
P.
,
Gerbino
,
S.
, and
Patalano
,
S.
,
2011
, “
Simulation of Variational Compliant Assemblies With Shape Errors Based on Morphing Mesh Approach
,”
Int. J. Adv. Manuf. Technol.
,
53
(
1–4
), pp.
47
61
.
29.
Wagersten
,
O.
,
Lindau
,
B.
,
Lindkvist
,
L.
, and
Söderberg
,
R.
,
2014
, “
Using Morphing Techniques in Early Variation Analysis
,”
ASME J. Comput. Inf. Sci. Eng.
,
14
(
1
), p.
011007
.
30.
Formosa
,
F.
, and
Samper
,
S.
,
2007
, “
Modal Expression of Form Defects
,”
Models for Computer Aided Tolerancing in Design and Manufacturing
,
Springer
, Berlin, pp.
13
22
.
31.
Huang
,
W.
, and
Ceglarek
,
D.
,
2002
, “
Mode-Based Decomposition of Part Form Error by Discrete-Cosine-Transform With Implementation to Assembly and Stamping System With Compliant Parts
,”
CIRP Ann. Manuf. Technol.
,
51
(
1
), pp.
21
26
.
32.
Wilma
,
P.
, and
Giovanni
,
M.
,
2015
, “
Manufacturing Signature for Tolerance Analysis
,”
ASME J. Comput. Inf. Sci. Eng.
,
15
(2), p.
021005
.
33.
Armillotta
,
A.
,
2016
, “
Tolerance Analysis Considering Form Errors in Planar Datum Features
,”
Procedia CIRP
,
43
, pp.
64
69
.
34.
Bruyère
,
J.
,
Dantan
,
J.-Y.
,
Bigot
,
R.
, and
Martin
,
P.
,
2007
, “
Statistical Tolerance Analysis of Bevel Gear by Tooth Contact Analysis and Monte Carlo Simulation
,”
Mech. Mach. Theory
,
42
(
10
), pp.
1326
1351
.
35.
Schleich
,
B.
, and
Wartzack
,
S.
,
2018
, “
Novel Approaches for the Assembly Simulation of Rigid Skin Model Shapes in Tolerance Analysis
,”
Comput.-Aided Des.
, 101, pp.
1
11
.
36.
Dantan
,
J.-Y.
,
Huang
,
Z.
,
Goka
,
E.
,
Lazhar
,
H.
,
Alain
,
E.
,
Nicolas
,
B.
, and
Mickael
,
R.
,
2017
, “
Geometrical Variations Management for Additive Manufactured Product
,”
CIRP Ann. Manuf. Technol.
, 66(1), pp.
161
164
.
37.
Zhu
,
Z.
,
Anwer
,
N.
, and
Mathieu
,
L.
,
2017
, “
Deviation Modeling and Shape Transformation in Design for Additive Manufacturing
,”
Procedia CIRP
,
60
, pp.
211
216
.
38.
Bastani
,
K.
,
Barazandeh
,
B.
, and
Kong
,
Z. J.
,
2017
, “
Fault Diagnosis in Multistation Assembly Systems Using Spatially Correlated Bayesian Learning Algorithm
,”
ASME J. Manuf. Sci. Eng.
,
140
(
3
), p.
031003
.
39.
Zhao
,
Z.
,
Li
,
B.
,
Zhang
,
G.
,
Hechun
,
Y.
,
Wenbo
,
W.
,
Xin
,
H.
,
Xiaoshuai
,
H.
,
Xupeng
,
C.
, and
Bo
,
Y.
,
2017
, “
Study on the Evaluation of Cylinder's Global Sizes
,”
Precis. Eng.
, 49, pp. 189–199.
40.
Mailhe
,
J.
,
Linares
,
J. M.
,
Sprauel
,
J. M.
, and
Bourdet
,
P.
,
2008
, “
Geometrical Checking by Virtual Gauge, Including Measurement Uncertainties
,”
CIRP Ann. Manuf. Technol.
,
57
(
1
), pp.
513
516
.
41.
Wang
,
M.
,
Xi
,
L.
, and
Du
,
S.
,
2014
, “
3D Surface Form Error Evaluation Using High Definition Metrology
,”
Precis. Eng.
,
38
(
1
), pp.
230
236
.
42.
Groeger
,
S.
,
Segel
,
F.
,
Uhlmann
,
E.
, and
Rosskamp
,
S.
,
2018
, “
Definition of Edges in Correlation to Abrasive Flow Machining as a Finishing Process
,”
Surf. Topogr. Metrol. Prop.
, 6(3), p. 034001. https://orcid.org/0000-0002-7010-0993
43.
Xingyu
,
Y.
, and
Alex
,
B.
,
2016
, “
Toward an Automatic Generation of Part Models With Form Error
,”
Procedia CIRP
,
43
, pp.
23
28
.
44.
Movahhedy
,
M.
,
Gadala
,
M. S.
, and
Altintas
,
Y.
,
2000
, “
Simulation of the Orthogonal Metal Cutting Process Using an Arbitrary Lagrangian–Eulerian Finite-Element Method
,”
J. Mater. Process Technol.
,
103
(
2
), pp.
267
275
.
45.
Söderberg
,
R.
,
Wärmefjord
,
K.
,
Carlson
,
J. S.
, and
Lindkvist
,
L.
,
2017
, “
Toward a Digital Twin for Real-Time Geometry Assurance in Individualized Production
,”
CIRP Ann.
,
66
(
1
), pp.
137
140
.
46.
Sattarpanah Karganroudi
,
S.
,
Cuillière
,
J.-C.
,
François
,
V.
, and
Tahan
,
S.-A.
,
2018
, ‘
What-If’ Scenarios Towards Virtual Assembly-State Mounting for Non-Rigid Parts Inspection Using Permissible Loads
,”
Int. J. Adv. Manuf. Technol.
, 97(1–4), pp. 353–373.
47.
Forslund
,
A.
,
Lorin
,
S.
,
Lindkvist
,
L.
,
Wärmefjord
,
K.
, and
Söderberg
,
R.
,
2017
, “
Minimizing Weld Variation Effects Using Permutation Genetic Algorithms and Virtual Locator Trimming
,”
ASME
Paper No. IMECE2017-71310
48.
Li
,
B.
,
Cao
,
Y.
,
Ye
,
X.
,
Guan
,
J.
, and
Yang
,
J.
,
2017
, “
Multi-Scale Prediction of the Geometrical Deviations of the Surface Finished by Five-Axis Ball-End Milling
,”
Proc. Inst. Mech. Eng. Part B
,
231
(
10
), pp.
1685
1702
.
49.
Bo
,
L.
,
Yanlong
,
C.
,
Wenhua
,
C.
, and
Jun
,
P.
,
2017
, “
Geometry Simulation and Evaluation of the Surface Topography in Five-Axis Ball-End Milling
,”
Int. J. Adv. Manuf. Technol.
,
93
(
5–8
), pp.
1651
1667
.
50.
Altintas
,
Y.
,
Kersting
,
P.
,
Biermann
,
D.
,
Budak
,
E.
,
Denkena
,
B.
, and
Lazoglu
,
I.
,
2014
, “
Virtual Process Systems for Part Machining Operations
,”
CIRP Ann. Manuf. Technol.
,
63
(
2
), pp.
585
605
.
51.
Spence
,
A. D.
,
Abrari
,
F.
, and
Elbestawi
,
M. A.
,
2000
, “
Integrated Solid Modeller Based Solutions for Machining
,”
Comput-Aided Des.
,
32
(
8–9
), pp.
553
568
.
52.
Soori
,
M.
,
Arezoo
,
B.
, and
Habibi
,
M.
,
2014
, “
Virtual Machining Considering Dimensional, Geometrical and Tool Deflection Errors in Three-Axis CNC Milling Machines
,”
J. Manuf. Syst.
,
33
(
4
), pp.
498
507
.
53.
Lin
,
Y.
, and
Shen
,
Y.-L.
,
2004
, “
Enhanced Virtual Machining for Sculptured Surfaces by Integrating Machine Tool Error Models Into NC Machining Simulation
,”
Int. J. Mach. Tools Manuf.
,
44
(
1
), pp.
79
86
.
54.
Zhang
,
M.
,
Anwer
,
N.
,
Mathieu
,
L.
, and
Zhao
,
H.
,
2011
, “
A Discrete Geometry Framework for Geometrical Product Specifications
,”
21st CIRP Design Conference
, pp. 142–148.
55.
Das
,
A.
,
Franciosa
,
P.
,
Williams
,
D.
, and
Ceglarek
,
D.
,
2016
, “
Physics-Driven Shape Variation Modelling at Early Design Stage
,”
Procedia CIRP
,
41
, pp.
1072
1077
.
56.
Franciosa
,
P.
, and
Gerbino
,
S.
,
2009
, “
Handling Tessellated Free Shape Objects With a Morphing Mesh Procedure in Comsol Multiphysics®
,”
COMSOL Conference
, pp.
14
16
.
57.
Kingslake
,
R.
, and
Shannon
,
R. R.
,
1992
, “
Basic Wavefront Aberration Theory for Optical Metrology
,”
Applied Optics and Optical Engineering
, Vol.
11
,
Academic Press
,
New York
.
58.
Cao
,
Y.
,
Li
,
B.
,
Ye
,
X.
,
Jiayan
,
G.
, and
Jiangxin
,
Y.
,
2015
, “
Geometrical Simulation of Multiscale Toleranced Surface With Consideration of the Tolerancing Principle
,”
ASME J. Comput. Inf. Sci. Eng.
,
15
(
2
), p.
021006
.
59.
Ganti
,
S.
, and
Bhushan
,
B.
,
1995
, “
Generalized Fractal Analysis and Its Applications to Engineering Surfaces
,”
Wear
,
180
(
1–2
), pp.
17
34
.
60.
Hasegawa
,
M.
,
Liu
,
J.
,
Okuda
,
K.
, and
Nunobiki
,
M.
,
1996
, “
Calculation of the Fractal Dimensions of Machined Surface Profiles
,”
Wear
,
192
(
1–2
), pp.
40
45
.
61.
Nguyen
,
H. T.
,
Wang
,
H.
, and
Hu
,
S. J.
,
2014
, “
Modeling Cutter Tilt and Cutter-Spindle Stiffness for Machine Condition Monitoring in Face Milling Using High-Definition Surface Metrology
,”
Int. J. Adv. Manuf. Technol.
,
70
(
5–8
), pp.
1323
1335
.
62.
Mollon
,
G.
, and
Zhao
,
J.
,
2014
, “
3D Generation of Realistic Granular Samples Based on Random Fields Theory and Fourier Shape Descriptors
,”
Comput. Methods Appl. Mech. Eng.
,
279
, pp.
46
65
.
63.
Schleich
,
B.
, and
Wartzack
,
S.
,
2015
, “
Tolerance Analysis of Rotating Mechanism Based on Skin Model Shapes in Discrete Geometry
,”
Procedia CIRP
,
27
, pp.
10
15
.
64.
Schleich
,
B.
, and
Wartzack
,
S.
,
2015
, “
Evaluation of Geometric Tolerances and Generation of Variational Part Representatives for Tolerance Analysis
,”
Int. J. Adv. Manuf. Technol.
,
79
(
5–8
), pp.
959
983
.
65.
Pacella
,
M.
, and
Colosimo
,
B. M.
,
2013
, “
Different Formulations of Principal Component Analysis for 3D Profiles and Surfaces Modeling
,”
Procedia CIRP
,
12
, pp.
474
479
.
66.
Aguirre
,
M. R.
,
Linguraru
,
M. G.
,
Marias
,
K.
,
Ayache
,
N.
,
Nolte
,
L.-p.
, and
Ballester
,
M. A. G.
,
2007
, “
Statistical Shape Analysis Via Principal Factor Analysis
,” Fourth
IEEE
International Symposium on Biomedical Imaging: From Nano to Macro, Arlington, VA, Apr. 12–15, pp.
1216
1219
.
67.
Schwarz
,
C.
,
Ackert
,
P.
, and
Mauermann
,
R.
,
2018
, “
Principal Component Analysis and Singular Value Decomposition Used for a Numerical Sensitivity Analysis of a Complex Drawn Part
,”
Int. J. Adv. Manuf. Technol.
,
94
(
5–8
), pp.
2255
2265
.
68.
Raffin
,
R.
,
Neveu
,
M.
, and
Jaar
,
F.
,
2000
, “
Curvilinear Displacement of Free-Form-Based Deformation
,”
Vis. Comput.
,
16
(
1
), pp.
38
46
.
69.
Staten
,
M. L.
,
Owen
,
S. J.
,
Shontz
,
S. M.
,
Salinger
,
A. G.
, and
Coffey
,
T. S.
,
2011
, “
A Comparison of Mesh Morphing Methods for 3D Shape Optimization
,”
20th International Meshing Roundtable
, pp.
293
311
.
70.
Luo
,
C.
,
Franciosa
,
P.
,
Ceglarek
,
D.
, et al. 
2018
, “
A Novel Geometric Tolerance Modeling Inspired by Parametric Space Envelope
,”
IEEE Trans. Autom. Sci. Eng.
, 15(3), pp.
1
13
.
71.
Pierce
,
R. S.
, and
Rosen
,
D.
,
2008
, “
A Method for Integrating Form Errors Into Geometric Tolerance Analysis
,”
ASME J. Mech. Des.
,
130
(
1
), p.
011002
.
72.
Pierce
,
R. S.
, and
Rosen
,
D.
,
2007
, “
Simulation of Mating Between Nonanalytic Surfaces Using a Mathematical Programing Formulation
,”
ASME J. Comput. Inf. Sci. Eng.
,
7
(
4
), p.
314
.
73.
Kiridena
,
V. S. B.
, and
Ferreira
,
P. M.
,
1994
, “
Kinematic Modeling of Quasistatic Errors of Three-Axis Machining Centers
,”
Int. J. Mach. Tools. Manuf.
,
34
(
1
), pp.
85
100
.
74.
Uddin
,
M. S.
,
Ibaraki
,
S.
,
Matsubara
,
A.
, and
Matsushita
,
T.
,
2009
, “
Prediction and Compensation of Machining Geometric Errors of Five-Axis Machining Centers With Kinematic Errors
,”
Precis. Eng.
,
33
(
2
), pp.
194
201
.
75.
Bolle
,
R. M.
, and
Vemuri
,
B. C.
,
1991
, “
On Three-Dimensional Surface Reconstruction Methods
,”
IEEE Trans. Pattern Anal. Mach. Intell.
,
13
(
1
), pp.
1
13
.
76.
Li
,
Z.-L.
,
Tuysuz
,
O.
,
Zhu
,
L.-M.
, and
Altintas
,
Y.
,
2018
, “
Surface Form Error Prediction in Five-Axis Flank Milling of Thin-Walled Parts
,”
Int. J. Mach. Tools Manuf.
,
128
, pp.
21
32
.
77.
Wei
,
Z. C.
,
Wang
,
M. J.
,
Cai
,
Y. J.
,
Zhu
,
J. N.
, and
Wang
,
L.
,
2013
, “
Form Error Estimation in Ball-End Milling of Sculptured Surface With Z-Level Contouring Tool Path
,”
Int. J. Adv. Manuf. Technol.
,
65
(
1–4
), pp.
363
369
.
78.
Corrado
,
A.
,
Polini
,
W.
,
Moroni
,
G.
, and
Petrò
,
S.
,
2016
, “
3D Tolerance Analysis With Manufacturing Signature and Operating Conditions
,”
Procedia CIRP
,
43
, pp.
130
135
.
79.
Corrado
,
A.
,
Polini
,
W.
, and
Moroni
,
G.
,
2017
, “
Manufacturing Signature and Operating Conditions in a Variational Model for Tolerance Analysis of Rigid Assemblies
,”
Res. Eng. Des.
, 28, p. 529.
80.
Corrado
,
A.
,
Polini
,
W.
,
Moroni
,
G.
, and
Petrò
,
S.
,
2018
, “
A Variational Model for 3D Tolerance Analysis With Manufacturing Signature and Operating Conditions
,”
Assem. Autom.
,
38
(
1
), pp.
10
19
.
81.
Corrado
,
A.
, and
Polini
,
W.
,
2017
, “
Manufacturing Signature in Jacobian and Torsor Models for Tolerance Analysis of Rigid Parts
,”
Robot. Comput.-Integr. Manuf.
,
46
, pp.
15
24
.
82.
Homri
,
L.
,
Goka
,
E.
,
Levasseur
,
G.
, and
Dantan
,
J.-Y.
,
2017
, “
Tolerance Analysis – Form Defects Modeling and Simulation by Modal Decomposition and Optimization
,”
Comput-Aided Des.
,
91
, pp.
46
59
.
83.
Qiao
,
L.
,
Wu
,
J.
,
Zhu
,
Z.
, and
Cui
,
Y.
,
2016
, “
Approach to the Deviation Representation of Non-Ideal Cylindrical Surfaces Based on the Curvilinear Coordinate System
,”
Procedia CIRP
,
43
, pp.
17
22
.
84.
Song
,
S.
,
Wang
,
A.
,
Huang
,
Q.
, and
Tsung
,
F.
,
2014
, “
Shape Deviation Modeling for Fused Deposition Modeling Processes
,” International Conference on Automation Science and Engineering
(CASE)
, Taipei, Taiwan, Aug. 18–22, pp.
758
763
.
85.
Huang
,
Q.
,
Nouri
,
H.
,
Xu
,
K.
, et al. .,
2014
, “
Predictive Modeling of Geometric Deviations of 3D Printed Products-A Unified Modeling Approach for Cylindrical and Polygon Shapes
,” IEEE International Conference on Automation Science and Engineering
(CASE)
, Taipei, Taiwan, Aug. 18–22, pp.
25
30
.
86.
Sabbaghi
,
A.
, and
Huang
,
Q.
,
2016
, “
Predictive Model Building Across Different Process Conditions and Shapes in 3D Printing
,” IEEE International Conference on Automation Science and Engineering
(CASE)
, Fort Worth, TX, Aug. 21–25, pp.
774
779
.
87.
Zernike
,
F.
,
1942
, “
Phase Contrast, a New Method for the Microscopic Observation of Transparent Objects
,”
Physica
,
9
(
7
), pp.
686
698
.
88.
Yao
,
J.
,
Anderson
,
A.
, and
Rolland
,
J. P.
,
2018
, “
Point-Cloud Noncontact Metrology of Freeform Optical Surfaces
,”
Opt Express
,
26
(
8
), p.
10242
.
89.
Schindlbeck
,
C.
,
Pape
,
C.
, and
Reithmeier
,
E.
,
2018
, “
Predictor-Corrector Framework for the Sequential Assembly of Optical Systems Based on Wavefront Sensing
,”
Opt. Express
,
26
(
8
), p.
10669
.
90.
,
H. N.
,
2013
, “
Influence des défauts de forme sur le comportement des liaisons: étude expérimentale et théorique
,” thesis, Université Sciences et Technologies-Bordeaux I, Bordeaux, France.
91.
Huang
,
W.
, and
Kong
,
Z.
,
2008
, “
Simulation and Integration of Geometric and Rigid Body Kinematics Errors for Assembly Variation Analysis
,”
J. Manuf. Syst.
,
27
(
1
), pp.
36
44
.
92.
Huang
,
W.
,
Liu
,
J.
,
Chalivendra
,
V.
, et al. .,
2014
, “
Statistical Modal Analysis for Variation Characterization and Application in Manufacturing Quality Control
,”
IIE Trans
,
46
(
5
), pp.
497
511
.
93.
Jbira
,
I.
,
Tlija
,
M.
,
Louhichi
,
B.
, and
Tahan
,
A.
,
2017
, “
CAD/Tolerancing Integration: Mechanical Assembly With Form Defects
,”
Adv. Eng. Softw.
, 114, pp. 312–324.
94.
Goka
,
E.
,
Homri
,
L.
,
Beaurepaire
,
P.
, and
Dantan
,
J.-Y.
,
2017
, “
Geometrical Variation Simulation for Assembly With Form Defects
,”
ASME
Paper No. IMECE2017-70118.
95.
Wu
,
J.
,
Qiao
,
L.
,
Zhu
,
Z.
, and
Anwer
,
N.
,
2017
, “
A Novel Representation Method of Non-Ideal Surface Morphologies and Its Application in Shaft-Hole Sealing Simulation Analysis
,”
Proc. Inst. Mech. Eng. Part B
(epub).
96.
Weersink
,
R. A.
,
Chaudhary
,
S.
,
Mayo
,
K.
,
He
,
J.
, and
Wilson
,
B. C.
,
2017
, “
Shape-Based Reconstruction for Transrectal Diffuse Optical Tomography Monitoring of Photothermal Focal Therapy of Prostate Cancer: Simulation Studies
,”
J. Biomed. Opt.
,
22
(
4
), p.
045004
.
97.
Cheung
,
C. F.
,
Liu
,
M.
,
Leach
,
R.
,
Feng
,
X.
, and
Zhao
,
C.
,
2018
, “
Hierarchical-Information-Based Characterization of Multiscale Structured Surfaces
,”
CIRP Ann.
, 67(1), pp. 539–542.
98.
Bondy
,
J. A.
, and
Murty
,
U. S. R.
,
1976
,
Graph Theory With Applications
,
American Elsevier Pub
,
Co., New York
.
99.
Chung
,
F. R.
,
1997
,
Spectral Graph Theory
,
American Mathematical Society, Providence, RI
.
100.
Ohtake
,
Y.
,
Belyaev
,
A.
, and
Bogaevski
,
I.
,
2001
, “
Mesh Regularization and Adaptive Smoothing
,”
Comput-Aided Des.
,
33
(
11
), pp.
789
800
.
101.
Vallet
,
B.
, and
Lévy
,
B.
,
2008
, “
Spectral Geometry Processing With Manifold Harmonics
,”
Computer Graphics Forum
,
Wiley
, Hoboken, NJ, pp.
251
260
.
102.
Wang
,
H.
,
Lu
,
T.
,
Au
,
O. K.-C.
, and
Tai
,
C.-L.
,
2014
, “
Spectral 3D Mesh Segmentation With a Novel Single Segmentation Field
,”
Graph Models
,
76
(
5
), pp.
440
456
.
103.
Liu
,
R.
, and
Zhang
,
H.
,
2007
, “
Mesh Segmentation Via Spectral Embedding and Contour Analysis
,”
Computer Graphics Forum
,
Wiley
, Hoboken, NJ, pp.
385
394
.
104.
Zhang
,
H.
,
Van Kaick
,
O.
, and
Dyer
,
R.
,
2010
, “
Spectral Mesh Processing-COMPUTER GRAPHICS Forum
,”
Comput. Graph Forum
,
29
(
6
), pp.
1865
1894
.
105.
Lay
,
D. C.
,
Lay
,
S. R.
, and
McDonald
,
J.
,
2016
,
Linear Algebra and Its Applications, Fifth Edition
,
Pearson
,
Boston, MA
.
106.
Ballu
,
A.
,
Gomes
,
R.
,
Mimoso
,
P.
,
Cristovao
,
C.
, and
Correia
,
N.
,
2017
, “
Comparison of Mode Decomposition Methods Tested on Simulated Surfaces
,”
Advances on Mechanics, Design Engineering and Manufacturing
,
Springer
, Berlin, pp.
1053
1062
.
107.
Ledoux
,
Y.
,
Samper
,
S.
, and
Grandjean
,
J.
,
2016
, “
Integrating Form Defects of Mechanical Joints Into the Tolerance Studies
,”
Advances in Mathematics and Computer Science and Their Applications
,
WSEAS Press
,
Venice, Italy
.
108.
Goic
,
G. L.
,
Favrelière
,
H.
,
Samper
,
S.
, and
Formosa
,
F.
,
2011
, “
Multi Scale Modal Decomposition of Primary Form, Waviness and Roughness of Surfaces
,”
Scanning
,
33
(
5
), pp.
332
341
.
109.
Goïc
,
G. L.
,
Bigerelle
,
M.
,
Samper
,
S.
,
Favrelière
,
H.
, and
Pillet
,
M.
,
2016
, “
Multiscale Roughness Analysis of Engineering Surfaces: A Comparison of Methods for the Investigation of Functional Correlations
,”
Mech. Syst. Signal Process
,
66–67
, pp.
437
457
.
110.
Brient
,
A.
,
Laniel
,
R.
,
Miroir
,
M.
,
Le Goic
,
G.
, and
Sangleboeuf
,
J. C.
, 2015, “
Multiscale Topography Analysis of Waterjet Pocketing of Silica Glass Surfaces,”
15th International Conference on Metrology and Properties of Engineering Surfaces, Charlotte, NC, Mar.
111.
Guo
,
J.
,
Li
,
B.
,
Liu
,
Z.
, et al. .,
2016
, “
Integration of Geometric Variation and Part Deformation Into Variation Propagation of 3-D Assemblies
,”
Int. J. Prod. Res.
,
54
(
19
), pp.
5708
5721
.
112.
Grandjean
,
J.
,
Ledoux
,
Y.
,
Samper
,
S.
, and
Favrelière
,
H.
,
2013
, “
Form Errors Impact in a Rotating Plane Surface Assembly
,”
Procedia CIRP
,
10
, pp.
178
185
.
113.
Grandjean
,
J.
,
Ledoux
,
Y.
, and
Samper
,
S.
,
2013
, “
On the Role of Form Defects in Assemblies Subject to Local Deformations and Mechanical Loads
,”
Int. J. Adv. Manuf. Technol.
,
65
(
9–12
), pp.
1769
1778
.
114.
Zeng
,
P.
,
2007
,
Fundamentals of Finite Element Analysis
,
Tsinghua University Press
,
Beijing, China
.
115.
Adler
,
R. J.
, and
Taylor
,
J. E.
,
2007
,
Random Fields and Geometry
,
Springer Science + Business Media
,
New York
.
116.
Li
,
C.
, and
Der Kiureghian
,
A.
,
1993
, “
Optimal Discretization of Random Fields
,”
J. Eng. Mech.
,
119
(
6
), pp.
1136
1154
.
117.
Sudret
,
B.
, and
Der Kiureghian
,
A.
,
2000
, “Stochastic Finite Element Methods and Reliability: A State-of-the-Art Report,”
University of California Berkeley
,
Berkeley, CA
, Report No. UCB/SEMM-2000/08.
118.
Henke
,
R. P.
,
Summerhays
,
K. D.
,
Baldwin
,
J. M.
, et al. 
1999
, “
Methods for Evaluation of Systematic Geometric Deviations in Machined Parts and Their Relationships to Process Variables
,”
Precis. Eng.
,
23
(
4
), pp.
273
292
.
119.
Ballu
,
A.
,
Mathieu
,
L.
, and
Dantan
,
J.-Y.
,
2003
, “
Global View of Geometrical Specifications
,”
Geometric Product Specification and Verification: Integration of Functionality
,
Springer
, Dordrecht, The Netherlands, pp.
13
24
.
120.
ISO,
2011
, “
Geometric Product Specification-General Concepts—Part 1: Model for Geometrical Specification and Verification
,” International Organization for Standardization, Geneva, Switzerland, Standard No. 17450-1.
121.
Kurokawa
,
S.
, and
Ariura
,
Y.
,
2005
, “
Evaluation of Shot Peened Surfaces Using Characterization Technique of Three-Dimensional Surface Topography
,”
J. Phys. Conf. Ser.
,
13
, pp.
9
12
.
122.
Samper
,
S.
,
Adragna
,
P.-A.
,
Favreliere
,
H.
, and
Pillet
,
M.
,
2009
, “
Modeling of 2D and 3D Assemblies Taking Into account Form Errors of Plane Surfaces
,”
ASME J. Comput. Inf. Sci. Eng.
,
9
(
4
), p.
041005
.
123.
ISO,
2012
, “
Geometrical Product Specifications (GPS)—Surface Texture: Areal—Part 2: Terms, Definitions and Surface Texture Parameters
,” International Organization for Standardization, Geneva, Switzerland, Standard No. 25178-2.
124.
Chen
,
X.
,
Raja
,
J.
, and
Simanapalli
,
S.
, 1995, “
Multi-Scale Analysis of Engineering Surfaces
,” Int. J. Mach. Tools Manuf., 35(2), pp. 231–238.
You do not currently have access to this content.