There are a large number of real-world engineering design problems that are multi-objective and multiconstrained, having uncertainty in their inputs. Robust optimization is developed to obtain solutions that are optimal and less sensitive to uncertainty. Since most of complex engineering design problems rely on time-consuming simulations, the robust optimization approaches may become computationally intractable. To address this issue, an advanced multi-objective robust optimization approach based on Kriging model and support vector machine (MORO-KS) is proposed in this work. First, the main problem in MORO-KS is iteratively restricted by constraint cuts formed in the subproblem. Second, each objective function is approximated by a Kriging model to predict the response value. Third, a support vector machine (SVM) classifier is constructed to replace all constraint functions classifying design alternatives into two categories: feasible and infeasible. The proposed MORO-KS approach is tested on two numerical examples and the design optimization of a micro-aerial vehicle (MAV) fuselage. Compared with the results obtained from other MORO approaches, the effectiveness and efficiency of the proposed MORO-KS approach are illustrated.

References

References
1.
Tajik
,
N.
,
Tavakkoli-Moghaddam
,
R.
,
Vahdani
,
B.
, and
Mousavi
,
S. M.
,
2014
, “
A Robust Optimization Approach for Pollution Routing Problem With Pickup and Delivery Under Uncertainty
,”
J. Manuf. Syst.
,
33
(
2
), pp.
277
286
.
2.
Vahdani
,
B.
, and
Mohammadi
,
M.
,
2015
, “
A Bi-Objective Interval-Stochastic Robust Optimization Model for Designing Closed Loop Supply Chain Network With Multi-Priority Queuing System
,”
Int. J. Prod. Econ.
,
170
, pp.
67
87
.
3.
Ray
,
T.
,
2002
, “
Constrained Robust Optimal Design Using a Multiobjective Evolutionary Algorithm
,”
Congress on Evolutionary Computation
(
CEC'02
), Honolulu, HI, May 12–17, pp.
419
424
.
4.
Sun
,
G.
,
Baek
,
S.
,
Baek
,
S.
, and
Li
,
Q.
,
2014
, “
Robust Optimization of Foam-Filled Thin-Walled Structure Based on Sequential Kriging Metamodel
,”
Struct. Multidiscip. Optim.
,
49
(
6
), pp.
897
913
.
5.
Song
,
X.
,
Sun
,
G.
, and
Li
,
Q.
,
2016
, “
Sensitivity Analysis and Reliability Based Design Optimization for High-Strength Steel Tailor Welded Thin-Walled Structures Under Crashworthiness
,”
Thin-Walled Struct.
,
109
, pp.
132
142
.
6.
Cao
,
L.
,
Jiang
,
P.
,
Chen
,
Z.
,
Zhou
,
Q.
, and
Zhou
,
H.
,
2015
, “
Metamodel Assisted Robust Optimization Under Interval Uncertainly Based on Reverse Model
,”
IFAC PapersOnline
,
48
(
28
), pp.
1178
1183
.
7.
Zhou
,
Q.
,
Shao
,
X.
,
Jiang
,
P.
,
Zhou
,
H.
,
Cao
,
L.
, and
Zhang
,
L.
,
2015
, “
A Deterministic Robust Optimisation Method Under Interval Uncertainty Based on the Reverse Model
,”
J. Eng. Des.
,
26
(
10–12
), pp.
416
444
.
8.
Lee
,
D. S.
,
Gonzalez
,
L. F.
,
Periaux
,
J.
, and
Srinivas
,
K.
,
2008
, “
Robust Design Optimisation Using Multi-Objective Evolutionary Algorithms
,”
Comput. Fluids
,
37
(
5
), pp.
565
583
.
9.
Gaspar-Cunha
,
A.
,
Ferreira
,
J.
, and
Recio
,
G.
,
2014
, “
Evolutionary Robustness Analysis for Multi-Objective Optimization: Benchmark Problems
,”
Struct. Multidiscip. Optim.
,
49
(
5
), pp.
771
793
.
10.
Li
,
M.
,
2010
, “
An Improved Kriging Assisted Multi-Objective Genetic Algorithm
,”
ASME
Paper No. DETC2010-28543.
11.
Hu
,
W.
,
2012
, “
Approximation Assisted Multiobjective and Collaborative Robust Optimization Under Interval Uncertainty
,”
Ph.D. dissertation
, University of Maryland, College Park, MD.https://drum.lib.umd.edu/handle/1903/13057
12.
Hu
,
W.
,
Li
,
M.
,
Azarm
,
S.
,
Hashimi
,
S. A.
,
Almansoori
,
A.
, and
Al-Qasas
,
N.
, 2009, “
Improving Multi-Objective Robust Optimization Under Interval Uncertainty Using Worst Possible Point Constraint Cuts
,”
ASME
Paper No. DETC2009-87312.
13.
Hu
,
W.
,
Li
,
M.
,
Azarm
,
S.
, and
Almansoori
,
A. S.
,
2011
, “
Multi-Objective Robust Optimization Under Interval Uncertainty Using Online Approximation and Constraint Cuts
,”
ASME J. Mech. Des.
,
133
(
6
), p.
061002
.
14.
Picheny
,
V.
,
Ginsbourger
,
D.
,
Roustant
,
O.
,
Haftka
,
R. T.
, and
Kim
,
N. H.
,
2010
, “
Adaptive Designs of Experiments for Accurate Approximation of Target Regions
,”
ASME J. Mech. Des.
,
132
(
7
), pp.
461
471
.
15.
Song
,
X.
,
Sun
,
G.
,
Li
,
G.
,
Gao
,
W.
, and
Li
,
Q.
,
2012
, “
Crashworthiness Optimization of Foam-Filled Tapered Thin-Walled Structure Using Multiple Surrogate Models
,”
Struct. Multidiscip. Optim.
,
47
(
2
), pp.
221
231
.
16.
Liu
,
H.
,
Xu
,
S.
,
Wang
,
X.
,
Yang
,
S.
, and
Meng
,
J.
,
2016
, “
A Multi-Response Adaptive Sampling Approach for Global Metamodeling
,”
Proc. Inst. Mech. Eng., Part C
,
232
(
1
), pp.
3
16
.
17.
Myers
,
R. H.
, and
Montgomery
,
D. C.
,
2009
, “
Response Surface Methodology: Process and Product in Optimization Using Designed Experiments
,”
J. Stat. Plann. Inference
,
38
(
3
), pp.
284
286
.
18.
Zhou
,
Q.
,
Jiang
,
P.
,
Shao
,
X.
,
Hu
,
J.
,
Cao
,
L.
, and
Wan
,
L.
,
2017
, “
A Variable Fidelity Information Fusion Method Based on Radial Basis Function
,”
Adv. Eng. Inf.
,
32
(
C
), pp.
26
39
.
19.
Zhou
,
Q.
,
Shao
,
X.
,
Jiang
,
P.
,
Zhou
,
H.
, and
Shu
,
L.
,
2015
, “
An Adaptive Global Variable Fidelity Metamodeling Strategy Using a Support Vector Regression Based Scaling Function
,”
Simul. Modell. Pract. Theory
,
59
, pp.
18
35
.
20.
Zhou
,
Q.
,
Jiang
,
P.
,
Shao
,
X.
,
Zhou
,
H.
,
Hu
,
J.
,
Zhou
,
Q.
,
Jiang
,
P.
,
Shao
,
X.
,
Zhou
,
H.
, and
Hu
,
J.
,
2017
, “
An On-Line Kriging Metamodel Assisted Robust Optimization Approach Under Interval Uncertainty
,”
Eng. Comput.
,
34
(
2
), pp.
420
446
.
21.
Zhou
,
H.
,
Zhou
,
Q.
,
Liu
,
C.
, and
Zhou
,
T.
,
2017
, “
A Kriging Metamodel-Assisted Robust Optimization Method Based on a Reverse Model
,”
Eng. Optim.
,
50
(
2
), pp.
253
272.
22.
Liu
,
H.
,
Cai
,
J.
, and
Ong
,
Y. S.
,
2017
, “
An Adaptive Sampling Approach for Kriging Metamodeling by Maximizing Expected Prediction Error
,”
Comput. Chem. Eng.
,
106
, pp.
171
182
.
23.
Han
,
Z.-H.
, and
Görtz
,
S.
,
2012
, “
Hierarchical Kriging Model for Variable-Fidelity Surrogate Modeling
,”
AIAA J.
,
50
(
9
), pp.
1885
1896
.
24.
Han
,
Z.
,
Zimmerman
,
R.
, and
Görtz
,
S.
,
2012
, “
Alternative Cokriging Method for Variable-Fidelity Surrogate Modeling
,”
AIAA J.
,
50
(
5
), pp.
1205
1210
.
25.
Kumar
,
P.
,
Gupta
,
D. K.
,
Mishra
,
V. N.
, and
Prasad
,
R.
,
2015
, “
Comparison of Support Vector Machine, Artificial Neural Network, and Spectral Angle Mapper Algorithms for Crop Classification Using LISS IV Data
,”
Int. J. Remote Sens.
,
36
(
6
), pp.
1604
1617
.
26.
Gokgoz
,
E.
, and
Subasi
,
A.
,
2015
, “
Comparison of Decision Tree Algorithms for EMG Signal Classification Using DWT
,”
Biomed. Signal Process. Control
,
18
(
4
), pp.
138
144
.
27.
De
,
B. H. P.
,
2017
, “
Support Vector Machine Classification Trees Based on Fuzzy Entropy of Classification
,”
Anal. Chim. Acta
,
954
, pp.
14
21
.
28.
Utkin
,
L. V.
, and
Zhuk
,
Y. A.
,
2017
, “
An One-Class Classification Support Vector Machine Model by Interval-Valued Training Data
,”
Knowl.-Based Syst.
,
120
, pp.
43
56
.
29.
Kang
,
F.
,
Han
,
S.
,
Salgado
,
R.
, and
Li
,
J.
,
2015
, “
System Probabilistic Stability Analysis of Soil Slopes Using Gaussian Process Regression With Latin Hypercube Sampling
,”
Comput. Geotech.
,
63
, pp.
13
25
.
30.
Deb
,
K.
,
Pratap
,
A.
,
Agarwal
,
S.
, and
Meyarivan
,
T.
,
2002
, “
A Fast and Elitist Multiobjective Genetic Algorithm: NSGA-II
,”
IEEE Trans. Evol. Comput.
,
6
(
2
), pp.
182
197
.
31.
Goldberg
,
D. E.
, and
Holland
,
J. H.
,
1988
, “
Genetic Algorithms and Machine Learning
,”
Mach. Learn.
,
3
(2–3), pp.
95
99
.
32.
Cheng
,
S.
,
Zhou
,
J.
, and
Li
,
M.
,
2015
, “
A New Hybrid Algorithm for Multi-Objective Robust Optimization With Interval Uncertainty
,”
ASME J. Mech. Des.
,
137
(
2
), p.
021401
.
33.
Zheng
,
K.
,
Yang
,
R. J.
,
Xu
,
H.
, and
Hu
,
J.
,
2017
, “
A New Distribution Metric for Comparing Pareto Optimal Solutions
,”
Struct. Multidiscip. Optim.
,
55
(
1
), pp.
53
62
.
34.
Gunawan
,
S.
,
2004
, “
Parameter Sensitivity Measures for Single Objective, Multi-Objective, and Feasibility Robust Design Optimization
,”
Ph.D. dissertation
, University of Maryland, College Park, MD.https://drum.lib.umd.edu/handle/1903/1542
35.
Nguyen
,
J.
,
Park
,
S. I.
, and
Rosen
,
D.
,
2013
, “
Heuristic Optimization Method for Cellular Structure Design of Light Weight Components
,”
Int. J. Precis. Eng. Manuf.
,
14
(
6
), pp.
1071
1078
.
You do not currently have access to this content.