As the core component of an automobile, the internal combustion engine (ICE) nowadays is still a typical complex engineering system. Tolerance design for ICEs is of great importance since small changes in the dimensions and clearances of ICE components may result in large variations on the performance and cost of manufactured products. In addition, uncertainty in tolerance design has great impact on the engine performance. Although tolerance optimization for the key components of ICEs has been discussed, few of them take uncertainty into consideration. In this regard, robust optimization (RO) for the tolerances of ICEs remains a critical issue. In this work, a novel RO approach is proposed to deal with the tolerance optimization problem for ICEs under parameter and model uncertainties, even considering metamodeling uncertainty from Gaussian processes (GP). A typical parameter uncertainty in ICEs exists in the rotation speed which can vary randomly due to the inherent randomness. AVL EXCITE software is used to build the simulation models of ICE components, which brings in model uncertainty. GP models are used as the analysis model in order to combine the corresponding simulation and experimental data together, which introduces metamodeling uncertainty. The proposed RO approach provides a general and systematic procedure for determining robust optimal tolerances and has competitive advantages over traditional experience-based tolerance design. In addition to the ICE example, a numerical example is utilized to demonstrate the applicability and effectiveness of the proposed approach.

References

References
1.
Speckhart
,
F. H.
,
1972
, “
Calculation of Tolerance Based on a Minimum Cost Approach
,”
J. Eng. Ind.
,
94
(
2
), pp.
447
453
.
2.
Spotts
,
M. F.
,
1973
, “
Allocation of Tolerances to Minimize Cost of Assembly
,”
J. Eng. Ind.
,
95
(
3
), pp.
762
764
.
3.
Michael
,
W.
, and
Siddall
,
J. N.
,
1981
, “
The Optimization Problem With Optimal Tolerance Assignment and Full Acceptance
,”
ASME J. Mech. Des.
,
103
(
4
), pp.
842
848
.
4.
Chase
,
K. W.
,
Greenwood
,
W. H.
,
Loosli
,
B. G.
, and
Hauglund
,
L. F.
,
1990
, “
Least Cost Tolerance Allocation for Mechanical Assemblies With Automated Process Selection
,”
Manuf. Rev.
,
3
(
1
), pp.
49
59
.http://adcats.et.byu.edu/Publication/89-4/Proc_Sel_Paper1.html
5.
Kennedy
,
M. C.
, and
O'Hagan
,
A.
,
2001
, “
Bayesian Calibration of Computer Models
,”
J. R. Stat. Soc.: Ser. B (Stat. Methodology)
,
63
(
3
), pp.
425
464
.
6.
Parkinson
,
A.
,
Sorensen
,
C.
, and
Pourhassan
,
N.
,
1993
, “
A General Approach for Robust Optimal Design
,”
ASME J. Mech. Des.
,
115
(
1
), pp.
74
80
.
7.
Chen
,
W.
,
Allen
,
J. K.
,
Tsui
,
K.-L.
, and
Mistree
,
F.
,
1996
, “
A Procedure for Robust Design: Minimizing Variations Caused by Noise Factors and Control Factors
,”
ASME J. Mech. Des.
,
118
(
4
), pp.
478
485
.
8.
Zang
,
C.
,
Friswell
,
M. I.
, and
Mottershead
,
J. E.
,
2005
, “
A Review of Robust Optimal Design and Its Application in Dynamics
,”
J. Comput. Struct.
,
83
(
4–5
), pp.
315
326
.
9.
Park
,
G.-J.
,
Lee
,
T.-H.
,
Lee
,
K. H.
, and
Hwang
,
K.-H.
,
2006
, “
Robust Design: An Overview
,”
AIAA J.
,
44
(
1
), pp.
181
191
.
10.
Janak
,
S. L.
,
Lin
,
X.
, and
Floudas
,
C. A.
,
2007
, “
A New Robust Optimization Approach for Scheduling Under Uncertainty II. Uncertainty With Known Probability Distribution
,”
Comput. Chem. Eng.
,
31
(
3
), pp.
171
195
.
11.
Li
,
M.
,
Azarm
,
S.
, and
Boyars
,
A.
,
2006
, “
A New Deterministic Approach Using Sensitivity Region Measures for Multi-Objective Robust and Feasibility Robust Design Optimization
,”
ASME J. Mech. Des.
,
128
(
4
), pp.
874
883
.
12.
Zhou
,
J.
, and
Li
,
M.
,
2013
, “
Advanced Robust Optimization With Interval Uncertainty Using a Single-Looped Structure and Sequential Quadratic Programming
,”
ASME J. Mech. Des.
,
136
(
2
), p.
021008
.
13.
Zhang
,
Y.
,
Li
,
M.
,
Zhang
,
J.
, and
Li
,
G.
,
2016
, “
Robust Optimization With Parameter and Model Uncertainties Using Gaussian Processes
,”
ASME J. Mech. Des.
,
138
(
11
), p.
111405
.
14.
Steuben
,
J. C.
, and
Turner
,
C. J.
,
2012
, “
Robust Optimization of Mixed-Integer Problems Using NURBs-Based Metamodels
,”
ASME J. Comput. Inf. Sci. Eng.
,
12
(
4
), p.
041010
.
15.
Steuben
,
J.
, and
Turner
,
C. J.
,
2010
, “
Robust Optimization Exploration Using NURBs-Based Metamodeling Techniques
,”
ASME
Paper No. DETC2010-28226.
16.
ur Rehman
,
S.
,
Langelaar
,
M.
, and
van Keulen
,
F.
,
2014
, “
Efficient Kriging-Based Robust Optimization of Unconstrained Problems
,”
J. Comput. Sci.
,
5
(
6
), pp.
872
881
.
17.
Oberkampf
,
W.
,
DeLand
,
S.
,
Rutherford
,
B.
,
Diegert
,
K.
, and
Alvin
,
K.
,
2000
, “
Estimation of Total Uncertainty in Modeling and Simulation
,” Sandia National Laboratories, Albuquerque, NM, Report No.
SAND2000-0824
.https://pdfs.semanticscholar.org/622e/24b98a3fac01e74760ee2e1da5367d8056b1.pdf
18.
Sacks
,
J.
,
Welch
,
W. J.
,
Mitchell
,
T. J.
, and
Wynn
,
H. P.
,
1989
, “
Design and Analysis of Computer Experiments
,”
Stat. Sci.
,
4
(
4
), pp.
409
423
.
19.
Higdon
,
D.
,
Kennedy
,
M.
,
Cavendish
,
J. C.
,
Cafeo
,
J. A.
, and
Ryne
,
R. D.
,
2004
, “
Combining Field Data and Computer Simulations for Calibration and Prediction
,”
SIAM J. Sci. Comput.
,
26
(
2
), pp.
448
466
.
20.
Wang
,
S.
,
Chen
,
W.
, and
Tsui
,
K.-L.
,
2009
, “
Bayesian Validation of Computer Models
,”
Technometrics
,
51
(
4
), pp.
439
451
.
21.
Arendt
,
P. D.
,
Apley
,
D. W.
, and
Chen
,
W.
,
2012
, “
Quantification of Model Uncertainty: Calibration, Model Discrepancy, and Identifiability
,”
ASME J. Mech. Des.
,
134
(
10
), p.
100908
.
22.
Rasmussen
,
C. E.
, and
Williams
,
C. K. I.
,
2006
,
Gaussian Process for Machine Learning
,
MIT Press
,
Cambridge, MA
.
23.
Chen
,
W.
,
Xiong
,
Y.
,
Tsui
,
K.-L.
, and
Wang
,
S.
,
2008
, “
A Design-Driven Validation Approach Using Bayesian Prediction Models
,”
ASME J. Mech. Des.
,
130
(
2
), p.
021101
.
24.
Jin
,
R.
,
Chen
,
W.
, and
Simpson
,
T. W.
,
2001
, “
Comparative Studies of Metamodeling Techniques Under Multiple Modeling Criteria
,”
Struct. Multidiscip. Optim.
,
23
(
1
), pp.
1
13
.
25.
Wang
,
G. G.
, and
Shan
,
S.
,
2007
, “
Review of Metamodeling Techniques in Support of Engineering Design Optimization
,”
ASME J. Mech. Des.
,
129
(
4
), pp.
370
380
.
26.
Zhan
,
Z.
,
Fu
,
Y.
, and
Yang
,
R.-J.
,
2013
, “
On Stochastic Model Interpolation and Extrapolation Methods for Vehicle Design
,”
SAE Int. J. Mater. Manuf.
,
6
(
3
), pp.
517
531
.
27.
Jin
,
R.
,
Du
,
X.
, and
Chen
,
W.
,
2003
, “
The Use of Metamodeling Techniques for Optimization Under Uncertainty
,”
Struct. Multidiscip. Optim.
,
25
(
2
), pp.
99
116
.
28.
Apley
,
D. W.
,
Liu
,
J.
, and
Chen
,
W.
,
2006
, “
Understanding the Effects of Model Uncertainty in Robust Design With Computer Experiments
,”
ASME J. Mech. Des.
,
128
(
4
), pp.
945
958
.
29.
Arendt
,
P. D.
,
Apley
,
D. W.
, and
Chen
,
W.
,
2013
, “
Objective-Oriented Sequential Sampling for Simulation Based Robust Design Considering Multiple Sources of Uncertainty
,”
ASME J. Mech. Des.
,
135
(
5
), p.
051005
.
30.
Zhang
,
S.
,
Zhu
,
P.
,
Chen
,
W.
, and
Arendt
,
P.
,
2012
, “
Concurrent Treatment of Parametric Uncertainty and Metamodeling Uncertainty in Robust Design
,”
Struct. Multidiscip. Optim.
,
47
(
1
), pp.
63
76
.
31.
Liu
,
Z.
,
Peng
,
X.
,
Qiu
,
C.
,
Tan
,
J.
,
Duan
,
G.
, and
Cheng
,
J.
,
2017
, “
Simulation-Based Robust Design of Complex Product Considering Uncertainties of Metamodel, Design Variables, and Noise Parameters
,”
Proc. Inst. Mech. Eng., Part C: J. Mech. Eng. Sci.
,
231
(
20
), pp.
3715
3727
.
32.
Zhu
,
P.
,
Zhang
,
S.
, and
Chen
,
W.
,
2014
, “
Multi-Point Objective-Oriented Sequential Sampling Strategy for Constrained Robust Design
,”
Eng. Optim.
,
47
(
3
), pp.
287
307
.
33.
Zhou
,
Q.
,
Wang
,
Y.
,
Choi
,
S.-K.
,
Jiang
,
P.
,
Shao
,
X.
,
Hu
,
J.
, and
Shu
,
L.
,
2017
, “
A Robust Optimization Approach Based on Multi-Fidelity Metamodel
,”
Struct. Multidiscip. Optim.
,
57
(
2
), pp.
775
797
.
34.
Zhou
,
H.
,
Zhou
,
Q.
,
Liu
,
C.
, and
Zhou
,
T.
,
2017
, “
A Kriging Metamodel-Assisted Robust Optimization Method Based on a Reverse Model
,”
Eng. Optim.
,
50
(
2
), pp.
253
272
.
35.
Wua
,
C.-C.
,
Chenb
,
Z.
, and
Tanga
,
G.-R.
,
1998
, “
Component Tolerance Design for Minimum Quality Loss and Manufacturing Cost
,”
Comput. Ind.
,
35
(
3
), pp.
223
232
.
36.
Li
,
M.-H. C.
,
2000
, “
Quality Loss Function Based Manufacturing Process Setting Models for Unbalanced Tolerance Design
,”
Int. J. Adv. Manuf. Technol.
,
16
(
1
), pp.
39
45
.
37.
Gong
,
H.
,
Xu
,
M.
,
Li
,
M.
,
Yuan
,
Z. Y.
,
Qin
,
J. H.
, and
Yang
,
X.
,
2015
, “
Tolerance Optimization for Improvement of Consistency in Engine Performance
,”
Chin. Intern. Combust. Engine Eng.
,
36
(
6
), pp.
98
104
.
38.
Zhou
,
J.
,
Li
,
M.
, and
Xu
,
M.
,
2016
, “
Multi-Disciplinary Tolerance Optimization for Internal Combustion Engines Using Gaussian Process and Sequential MDO Method
,”
SAE Int. J. Mater. Manuf.
,
9
(
2
), pp.
410
418
.
39.
Zhang
,
J.
,
Zhou
,
J.
,
Li
,
M.
, and
Xu
,
M.
,
2017
, “
Multi-Objective Tolerance Optimization Considering Friction Loss for Internal Combustion Engines
,”
SAE
Paper No. 2017-01-0250
.
40.
Zhou
,
L.
,
2013
, “
Research on Correlation Between Manufacturing Precision and Engine Friction Performance
,” Master thesis, Shanghai Jiao Tong University, Shanghai, China.
41.
Dearlove
,
J.
, and
Cheng
,
W. K.
,
1995
, “
Simultaneous Piston Ring Friction and Oil Film Thickness Measurements in a Reciprocating Test Rig
,”
SAE
Paper No. 952470
.
42.
Akalin
,
O.
, and
Newaz
,
G. M.
,
1998
, “
A New Experimental Technique for Friction Simulation in Automotive Piston Ring and Cylinder Liners
,”
SAE
Paper No. 981407
.
43.
Akalin
,
O.
, and
Newaz
,
G. M.
,
2001
, “
Piston Ring-Cylinder Bore Friction Modeling in Mixed Lubrication Regime—Part II: Correlation With Bench Test Data
,”
ASME J. Tribol.
,
123
(
1
), pp.
219
223
.
44.
Zhang
,
Q.
,
Mao
,
J. H.
, and
Xie
,
Y. B.
,
2007
, “
Analysis and Calculation of Friction of Piston-Assembly Based on IMEP Method
,”
Trans. CSICE
,
25
(
6
), pp.
560
564
.
45.
Wang
,
K.
, and
Zhou
,
Y. K.
,
2009
, “
Research on Friction Power Loss of Crankshaft Bearings for Internal Combustion Engines
,”
Shanghai Auto
,
2009
(
10
), pp.
21
24
.
46.
McKay
,
M. D.
,
Beckman
,
R. J.
, and
Conover
,
W. J.
,
1979
, “
Comparison of Three Methods for Selecting Values of Input Variables in the Analysis of Output From a Computer Code
,”
Technometrics
,
21
(
2
), pp.
239
245
.
47.
Simpson
,
T. W.
,
Lin
,
D. K. J.
, and
Chen
,
W.
,
2001
, “
Sampling Strategies for Computer Experiments: Design and Analysis
,”
Int. J. Reliab. Appl.
,
2
(
3
), pp.
209
240
.http://www.personal.psu.edu/users/j/x/jxz203/lin/Lin_pub/2001_IJRA.pdf
48.
Jones
,
D. R.
,
Schonlau
,
M.
, and
Welch
,
W. J.
,
1998
, “
Efficient Global Optimization of Expensive Black-Box Functions
,”
J. Global Optim.
,
13
(
4
), pp.
455
492
.
49.
Conti
,
S.
,
Gosling
,
J. P.
,
Oakley
,
J. E.
, and
O'Hagan
,
A.
,
2009
, “
Gaussian Process Emulation of Dynamic Computer Codes
,”
Biometrika
,
96
(
3
), pp.
663
676
.
50.
Conti
,
S.
, and
O'Hagan
,
A.
,
2010
, “
Bayesian Emulation of Complex Multi-Output and Dynamic Computer Models
,”
J. Stat. Plann. Inference
,
140
(
3
), pp.
640
651
.
51.
Arendt
,
P. D.
,
2012
, “
Quantification and Mitigation of Multiple Sources of Uncertainty in Simulation Based Design
,” Ph.D. dissertation, Northwestern University, Evanston, IL.
52.
Walter
,
M.
,
Sprügel
,
T.
, and
Wartzack
,
S.
,
2013
, “
Tolerance Analysis of Systems in Motion Taking Into Account Interactions Between Deviations
,”
Proc. Inst. Mech. Eng., Part B: J. Eng. Manuf.
,
227
(
5
), pp.
709
719
.
53.
Keane
,
A. J.
,
Sóbester
,
A.
, and
Forrester
,
A. I. J.
,
2007
, “
Multi-Fidelity Optimization Via Surrogate Modelling
,”
Proc. R. Soc. A: Math., Phys. Eng. Sci.
,
463
(
2088
), pp.
3251
3269
.
54.
Drehmer
,
D. E.
, and
Morris
,
G. W.
,
1981
, “
Cross-Validation With Small Samples: An Algorithm for Computing Gollob's Estimator
,”
Educ. Psychol. Meas.
,
41
(
1
), pp.
195
200
.
You do not currently have access to this content.