Fixture locators are used to precisely locate and stably support a workpiece so that the desired position and orientation (pose) of the workpiece relative to the cutting tool can be maintained during machining or inspection process. It is believed that manufacturing errors of locators and locating datum surfaces are key factors for the pose error between the workpiece and the cutting tool. Optimizing the layout of locators is helpful to reduce the pose error so as to improve machining accuracy of the workpiece. In order to minimize the pose error, we introduced, for the first time, a singular value decomposition (SVD) technique for the location matrix to derive error amplification factors (EAF) in six degrees-of-freedom of the workpiece. The EAF principle defines the maximal singular value, the condition number, the product of all singular values and the manipulability as the maximal error amplification factor, the relative error amplification factor, the error ellipsoid volume and the location stability, respectively. The four defined indices taken as objective functions are optimized, by a nondominated sort genetic algorithm (NSGA-II), so that an optimal layout of locators is obtained due to the minimization of the pose error. Also, the feasibility of the proposed method was comprehensively validated by simulation and machining experiments.

References

References
1.
Asada
,
H.
, and
By
,
A.
,
1985
, “
Kinematic Analysis of Workpart Fixturing for Flexible Assembly With Automatically Reconfigurable Fixtures
,”
IEEE J. Rob. Autom.
,
RA-1
(
2
), pp.
86
94
.
2.
Meter
,
E. C. D.
,
1995
, “
Min-Max Load Model for Optimizing Machining Fixture Performance
,”
ASME J. Manuf. Sci. Eng.
,
117
(
2
), pp.
186
193
.
3.
Cai
,
W.
, and
Hu
,
S. J.
,
1997
, “
A Variational Method of Robust Fixture Configuration Design for 3-D Workpieces
,”
ASME J. Manuf. Sci. Eng.
,
119
(
4A
), pp.
593
602
.
4.
Li
,
B.
, and
Melkote
,
S. N.
,
1999
, “
Improved Workpiece Location Accuracy Through Fixture Layout Optimization
,”
Int. J. Mach. Tools Manuf.
,
39
(
6
), pp.
871
883
.
5.
Krishnakumar
,
K.
, and
Melkote
,
S. N.
,
2000
, “
Machining Fixture Layout Optimization Using the Genetic Algorithm
,”
Int. J. Mach. Tools Manuf.
,
40
(
4
), pp.
579
598
.
6.
Carlson
,
J. S.
,
2001
, “
Quadratic Sensitivity Analysis of Fixturing and Locating Schemes for Rigid Parts
,”
ASME J. Manuf. Sci. Eng.
,
123
(
3
), pp.
462
472
.
7.
Wang
,
M. Y.
,
Liu
,
T.
, and
Pelinescu
,
D. M.
,
2003
, “
Fixture Kinematic Analysis Based on the Full Contact Model of Rigid Bodies
,”
ASME J. Manuf. Sci. Eng.
,
125
(
2
), pp.
316
324
.
8.
Raghu
,
A.
, and
Melkote
,
S. N.
,
2003
, “
Modeling of Workpiece Location Error Due to Fixture Geometric Error and Fixture-Workpiece Compliance
,”
ASME J. Manuf. Sci. Eng.
,
127
(
1
), pp.
273
280
.
9.
Raghu
,
A.
, and
Melkote
,
S. N.
,
2004
, “
Analysis of the Effects of Fixture Clamping Sequence on Part Location Errors
,”
Int. J. Mach. Tools Manuf.
,
44
(
4
), pp.
373
382
.
10.
Siebenaler
,
S. P.
, and
Melkote
,
S. N.
,
2006
, “
Prediction of Workpiece Deformation in a Fixture System Using the Finite Element Method
,”
Int. J. Mach. Tools Manuf.
,
46
(
1
), pp.
51
58
.
11.
Wang
,
Y.
,
Chen
,
X.
,
Liu
,
Q.
, and
Gindy
,
N.
,
2006
, “
Optimisation of Machining Fixture Layout Under Multi-Constraints
,”
Int. J. Mach. Tools Manuf.
,
46
(
12–13
), pp.
1291
1300
.
12.
Zheng
,
Y.
, and
Qian
,
W. H.
,
2008
, “
A 3-D Modular Fixture With Enhanced Localization Accuracy and Immobilization Capability
,”
Int. J. Mach. Tools Manuf.
,
48
(
6
), pp.
677
687
.
13.
Xiong
,
C. H.
,
Wang
,
M. Y.
,
Tang
,
Y.
, and
Xiong
,
Y. L.
,
2008
, “
On Clamping Planning in Workpiece-Fixture Systems
,”
IEEE Trans. Autom. Sci. Eng.
,
5
(
3
), pp.
407
419
.
14.
Wan
,
X. J.
,
Xiong
,
C. H.
,
Wang
,
X. F.
,
Zhang
,
X. M.
, and
Xiong
,
Y. L.
,
2009
, “
Analysis Synthesis of Dimensional Deviation of the Machining Feature for Discrete-Part Manufacturing Processes
,”
Int. J. Mach. Tools Manuf.
,
49
(
15
), pp.
1214
1233
.
15.
Wan
,
X. J.
,
Xiong
,
C. H.
,
Wang
,
X. F.
,
Zhang
,
X. M.
, and
Xiong
,
Y. L.
,
2010
, “
A Machining-Feature-Driven Approach to Locating Scheme in Multi-Axis Milling
,”
Int. J. Mach. Tools Manuf.
,
50
(
1
), pp.
42
50
.
16.
Armillotta
,
A.
,
Moroni
,
G.
,
Polini
,
W.
, and
Semeraro
,
Q.
,
2010
, “
A Unified Approach to Kinematic and Tolerance Analysis of Locating Fixture
,”
ASME J. Comput. Inf. Sci. Eng.
,
10
(
2
), p.
021009
.
17.
Wang
,
B. F.
, and
Nee
,
A. Y. C.
,
2011
, “
Robust Fixture Layout With the Multi-Objective Non-Dominated ACO/GA Approach
,”
CIRP Ann.-Manuf. Technol.
,
60
(
1
), pp.
183
186
.
18.
Liu
,
Z.
,
Wang
,
M. Y.
,
Wang
,
K.
, and
Mei
,
X.
,
2013
, “
Multi-Objective Optimization Design of a Fixture Layout Considering Locator Displacement and Force-Deformation
,”
Int. J. Adv. Manuf. Technol.
,
67
(
5–8
), pp.
1267
1279
.
19.
Liu
,
S. G.
,
Zheng
,
L.
,
Zhang
,
Z. H.
,
Li
,
Z. Z.
, and
Liu
,
D. C.
,
2007
, “
Optimization of the Number and Positions of Fixture Locators in the Peripheral Milling of a Low-Rigidity Workpiece
,”
Int. J. Adv. Manuf. Technol.
,
33
(
7–8
), pp.
668
676
.
20.
Chen
,
W.
,
Ni
,
L.
, and
Xue
,
J.
,
2008
, “
Deformation Control Through Fixture Layout Design and Clamping Force Optimization
,”
Int. J. Adv. Manuf. Technol.
,
38
(
9–10
), pp.
860
867
.
21.
Meshreki
,
M.
,
KöVecses
,
J.
,
Attia
,
H.
, and
Tounsi
,
N.
,
2008
, “
Dynamics Modeling and Analysis of Thin-Walled Aerospace Structures for Fixture Design in Multiaxis Milling
,”
ASME J. Manuf. Sci. Eng.
,
130
(
3
), pp.
361
374
.
22.
Meshreki
,
M.
,
Attia
,
H.
, and
Ko¨Vecses
,
J.
,
2011
, “
A New Analytical Formulation for the Dynamics of Multipocket Thin-Walled Structures Considering the Fixture Constraints
,”
ASME J. Manuf. Sci. Eng.
,
133
(
2
), p.
021014
.
23.
Meshreki
,
M.
,
Attia
,
H.
, and
Ko¨vecses
,
J.
,
2011
, “
Development of a New Model for the Varying Dynamics of Flexible Pocket-Structures During Machining
,”
ASME J. Manuf. Sci. Eng.
,
133
(
4
), p.
041002
.
24.
Wan
,
X. J.
,
Hua
,
L.
,
Wang
,
X. F.
,
Peng
,
Q. Z.
, and
Qin
,
X. P.
,
2011
, “
An Error Control Approach to Tool Path Adjustment Conforming to the Deformation of Thin-Walled Workpiece
,”
Int. J. Mach. Tools Manuf.
,
51
(
3
), pp.
221
229
.
25.
Wan
,
X. J.
,
Xiong
,
C. H.
, and
Hua
,
L.
,
2011
, “
Synchronous Adjustment of Milling Tool Path Based on the Relative Deviation
,”
ASME J. Manuf. Sci. Eng.
,
133
(
5
), p.
051010
.
26.
Wan
,
X. J.
, and
Zhang
,
Y.
,
2013
, “
A Novel Approach to Fixture Layout Optimization on Maximizing Dynamic Machinability
,”
Int. J. Mach. Tools Manuf.
,
70
(
2
), pp.
32
44
.
27.
Ma
,
J.
,
Zhang
,
D.
,
Wu
,
B.
,
Luo
,
M.
, and
Liu
,
Y.
,
2016
, “
Stability Improvement and Vibration Suppression of the Thin-Walled Workpiece in Milling Process Via Magnetorheological Fluid Flexible Fixture
,”
Int. J. Adv. Manuf. Technol.
,
88
(5–8), pp.
1231
1242
.
28.
Strang
,
G.
,
1980
,
Linear Algebra and Its Application
, 4th ed.,
Academic Press
, Cambridge, MA.
29.
Yoshikawa
,
T.
,
1985
, “
Manipulability of Robotic Mechanisms
,”
Int. J. Rob. Res.
,
4
(
2
), pp.
3
9
.
30.
Deb
,
K.
,
Pratap
,
A.
,
Agarwal
,
S.
, and
Meyarivan
,
T.
,
2002
, “
A Fast and Elitist Multiobjective Genetic Algorithm: NSGA-II
,”
IEEE Trans. Evol. Comput.
,
6
(
2
), pp.
182
197
.
You do not currently have access to this content.