Functionally graded materials (FGM) have recently attracted a lot of research attention in the wake of the recent prominence of additive manufacturing (AM) technologies. The continuously varying spatial composition profile of two or more materials affords FGM to possess properties of multiple different materials simultaneously. Emerging AM technologies enable manufacturing complex shapes with customized multifunctional material properties in an additive fashion. In this paper, we focus on providing an overview of research at the intersection of AM techniques and FGM objects. We specifically discuss FGM modeling representation schemes and outline a classification system to classify existing FGM representation methods. We also highlight the key aspects such as the part orientation, slicing, and path planning processes that are essential for fabricating FGM object through the use of multimaterial AM techniques.

References

References
1.
Kumar
,
V.
,
Burns
,
D.
,
Dutta
,
D.
, and
Hoffmann
,
C.
,
1999
, “
A Framework for Object Modeling
,”
Comput.-Aided Des.
,
31
(
9
), pp.
541
556
.
2.
Markworth
,
A.
,
Ramesh
,
K.
, and
Parks
,
W.
, Jr.
,
1995
, “
Modelling Studies Applied to Functionally Graded Materials
,”
J. Mater. Sci.
,
30
(
9
), pp.
2183
2193
.
3.
Mahamood
,
R. M.
,
Akinlabi
,
E. T.
,
Shukla
,
M.
, and
Pityana
,
S.
,
2012
, “
Functionally Graded Material: An Overview
,”
World Congress on Engineering
(
WCE
), London, July 4–6, pp.
1593
1597
.http://www.iaeng.org/publication/WCE2012/WCE2012_pp1593-1597.pdf
4.
Domack
,
M.
, and
Baughman
,
J.
,
2005
, “
Development of Nickel-Titanium Graded Composition Components
,”
Rapid Prototyping J.
,
11
(
1
), pp.
41
51
.
5.
Marin
,
L.
,
2005
, “
Numerical Solution of the Cauchy Problem for Steady-State Heat Transfer in Two-Dimensional Functionally Graded Materials
,”
Int. J. Solids Struct.
,
42
(
15
), pp.
4338
4351
.
6.
Hirano
,
T.
,
Teraki
,
J.
, and
Yamada
,
T.
,
1990
, “
On the Design of Functionally Gradient Materials
,”
First International Symposium on Functionally Gradient Materials
, Sendai, Japan, Oct. 8–9, pp.
5
10
.
7.
Pompe
,
W.
,
Worch
,
H.
,
Epple
,
M.
,
Friess
,
W.
,
Gelinsky
,
M.
,
Greil
,
P.
,
Hempel
,
U.
,
Scharnweber
,
D.
, and
Schulte
,
K.
,
2003
, “
Functionally Graded Materials for Biomedical Applications
,”
Mater. Sci. Eng.: A
,
362
(
1–2
), pp.
40
60
.
8.
Matsuo
,
S.
,
Watari
,
F.
, and
Ohata
,
N.
,
2001
, “
Fabrication of a Functionally Graded Dental Composite Resin Post and Core by Laser Lithography and Finite Element Analysis of Its Stress Relaxation Effect on Tooth Root
,”
Dent. Mater. J.
,
20
(
4
), pp.
257
274
.
9.
Watari
,
F.
,
Yokoyama
,
A.
,
Omori
,
M.
,
Hirai
,
T.
,
Kondo
,
H.
,
Uo
,
M.
, and
Kawasaki
,
T.
,
2004
, “
Biocompatibility of Materials and Development to Functionally Graded Implant for Bio-Medical Application
,”
Compos. Sci. Technol.
,
64
(
6
), pp.
893
908
.
10.
Oonishi
,
H.
,
Noda
,
T.
,
Ito
,
S.
,
Kohda
,
A.
,
Ishimaru
,
H.
,
Yamamoto
,
M.
, and
Tsuji
,
E.
,
1994
, “
Effect of Hydroxyapatite Coating on Bone Growth Into Porous Titanium Alloy Implants Under Loaded Conditions
,”
J. Appl. Biomater.
,
5
(
1
), pp.
23
37
.
11.
Müller
,
E.
,
Drašar
,
Č.
,
Schilz
,
J.
, and
Kaysser
,
W.
,
2003
, “
Functionally Graded Materials for Sensor and Energy Applications
,”
Mater. Sci. Eng.A
,
362
(
1–2
), pp.
17
39
.
12.
Niino
,
M.
,
Kisara
,
K.
, and
Mori
,
M.
,
2005
, “
Feasibility Study of FGM Technology in Space Solar Power Systems (SSPS)
,”
Mater. Sci. Forum
,
492–493
, pp.
163
170
.
13.
Malinina
,
M.
,
Sammi
,
T.
, and
Gasik
,
M. M.
,
2005
, “
Corrosion Resistance of Homogeneous and fgm Coatings
,”
Mater. Sci. Forum
,
492–493
, pp.
305
310
.
14.
Kawasaki
,
A.
, and
Watanabe
,
R.
,
2002
, “
Thermal Fracture Behavior of Metal/Ceramic Functionally Graded Materials
,”
Eng. Fract. Mech.
,
69
(
14–16
), pp.
1713
1728
.
15.
Osaka
,
T.
,
Matsubara
,
H.
,
Homma
,
T.
,
Mitamura
,
S.
, and
Noda
,
K.
,
1990
, “
Microstructural Study of Electroless-Plated Conirep/Nimop Double-Layered Media for Perpendicular Magnetic Recording
,”
Jpn. J. Appl. Phys.
,
29
(
10
), p.
1939
.
16.
Liu
,
G.
, and
Tani
,
J.
,
1994
, “
Surface Waves in Functionally Gradient Piezoelectric Plates
,”
ASME J. Vib. Acoust.
,
116
(
4
), pp.
440
448
.
17.
Librescu
,
L.
,
Oh
,
S.-Y.
, and
Song
,
O.
,
2005
, “
Thin-Walled Beams Made of Functionally Graded Materials and Operating in a High Temperature Environment: Vibration and Stability
,”
J. Therm. Stresses
,
28
(
6–7
), pp.
649
712
.
18.
Kumar
,
S.
,
Reddy
,
K. M.
,
Kumar
,
A.
, and
Devi
,
G. R.
,
2013
, “
Development and Characterization of Polymer–Ceramic Continuous Fiber Reinforced Functionally Graded Composites for Aerospace Application
,”
Aerosp. Sci. Technol.
,
26
(
1
), pp.
185
191
.
19.
Richardson, M., 2014, “From Art to Part,” Aerospace Manufacturing Magazine, MIT Publishing, Rochester, UK, accessed Feb. 20,
2016
, http://www.aero-mag.com/features/63/20141/2265/
20.
Noor
,
A. K.
,
Venneri
,
S. L.
,
Paul
,
D. B.
, and
Hopkins
,
M. A.
,
2000
, “
Structures Technology for Future Aerospace Systems
,”
Comput. Struct.
,
74
(
5
), pp.
507
519
.
21.
Miyamoto
,
Y.
,
Kaysser
,
W.
,
Rabin
,
B.
,
Kawasaki
,
A.
, and
Ford
,
R. G.
,
2013
,
Functionally Graded Materials: Design, Processing and Applications
, Vol.
5
,
Springer Science & Business Media
, New York.
22.
Cooley
,
W. G.
,
2005
, “
Application of Functionally Graded Materials in Aircraft Structures
,” Air Force Institute of Technology, Wright-Patterson Air Force Base, OH, Technical Report No.
AFIT/GAE/ENY/05-M04
.http://www.dtic.mil/dtic/tr/fulltext/u2/a434403.pdf
23.
Leong
,
K.
,
Chua
,
C.
,
Sudarmadji
,
N.
, and
Yeong
,
W.
,
2008
, “
Engineering Functionally Graded Tissue Engineering Scaffolds
,”
J. Mech. Behav. Biomed. Mater.
,
1
(
2
), pp.
140
152
.
24.
Thomas
,
V.
,
Zhang
,
X.
,
Catledge
,
S. A.
, and
Vohra
,
Y. K.
,
2007
, “
Functionally Graded Electrospun Scaffolds With Tunable Mechanical Properties for Vascular Tissue Regeneration
,”
Biomed. Mater.
,
2
(
4
), p.
224
.
25.
Chua
,
C.
,
Leong
,
K.
,
Sudarmadji
,
N.
,
Liu
,
M.
, and
Chou
,
S.
,
2011
, “
Selective Laser Sintering of Functionally Graded Tissue Scaffolds
,”
MRS Bull.
,
36
(
12
), pp.
1006
1014
.
26.
Hazan
,
E.
,
Ben-Yehuda
,
O.
,
Madar
,
N.
, and
Gelbstein
,
Y.
,
2015
, “
Functional Graded Germanium–Lead Chalcogenide-Based Thermoelectric Module for Renewable Energy Applications
,”
Adv. Energy Mater.
,
5
(
11
), p. 1500272.
27.
Kambe
,
M.
, and
Shikata
,
H.
,
2002
, “
Intensive Energy Density Thermoelectric Energy Conversion System by Using FGM Compliant Pads
,”
Acta Astronaut.
,
51
(
1–9
), pp.
161
171
.
28.
Okano
,
K.
, and
Takagi
,
Y.
,
1996
, “
Application of Sic-Si Functionally Gradient Material to Thermoelectric Energy Conversion Device
,”
Electr. Eng. Jpn.
,
117
(
6
), pp.
9
17
.
29.
Wośko
,
M.
,
Paszkiewicz
,
B.
,
Piasecki
,
T.
,
Szyszka
,
A.
,
Paszkiewicz
,
R.
, and
Tłaczała
,
M.
,
2005
, “
Applications of Functionally Graded Materials in Optoelectronic Devices
,”
Optica Appl.
,
35
(
3
), pp.
663
667
.https://www.infona.pl/resource/bwmeta1.element.baztech-article-BWA0-0006-0075
30.
Wośko
,
M.
,
Paszkiewicz
,
B.
,
Piasecki
,
T.
,
Szyszka
,
A.
,
Paszkiewicz
,
R.
, and
Tłaczała
,
M.
,
2005
, “
Application and Modeling of Functionally Graded Materials for Optoelectronic Devices
,”
IEEE
International Students and Young Scientists Workshop Photonics and Microsystems
, Dresden, Germany, July 7–8, pp.
87
89
.
31.
Gupta
,
K.
, and
Gupta
,
N.
,
2015
, “
Recent Advances and Emerging Trends in Electrical and Electronic Materials
,”
Advanced Electrical and Electronics Materials: Processes and Applications
, Wiley-Blackwell, Hoboken, NJ, pp.
631
675
.
32.
Udupa
,
G.
,
Rao
,
S. S.
, and
Gangadharan
,
K.
,
2014
, “
Functionally Graded Composite Materials: An Overview
,”
Procedia Mater. Sci.
,
5
, pp.
1291
1299
.
33.
Kieback
,
B.
,
Neubrand
,
A.
, and
Riedel
,
H.
,
2003
, “
Processing Techniques for Functionally Graded Materials
,”
Mater. Sci. Eng.: A
,
362
(
1–2
), pp.
81
106
.
34.
Ivosevic
,
M.
,
Knight
,
R.
,
Kalidindi
,
S.
,
Palmese
,
G.
, and
Sutter
,
J.
,
2006
, “
Solid Particle Erosion Resistance of Thermally Sprayed Functionally Graded Coatings for Polymer Matrix Composites
,”
Surf. Coat. Technol.
,
200
(
16–17
), pp.
5145
5151
.
35.
Knoppers
,
G.
,
Gunnink
,
J.
,
Van Den Hout
,
J.
, and
Van Vliet
,
W.
,
2005
, “
The Reality of Functionally Graded Material Products
,”
Intelligent Production Machines and Systems-First I* PROMS Virtual Conference, July 4–15
, p.
467
.
36.
Vidimče
,
K.
,
Wang
,
S.-P.
,
Ragan-Kelley
,
J.
, and
Matusik
,
W.
,
2013
, “
Openfab: A Programmable Pipeline for Multi-Material Fabrication
,”
ACM Trans. Graph. (TOG)
,
32
(
4
), p.
136
.
37.
Zhou
,
M.
,
Xi
,
J.
, and
Yan
,
J.
,
2004
, “
Modeling and Processing of Functionally Graded Materials for Rapid Prototyping
,”
J. Mater. Process. Technol.
,
146
(
3
), pp.
396
402
.
38.
Zhu
,
F.
,
2004
, “
Visualized CAD Modeling and Layered Manufacturing Modeling for Components Made of a Multiphase Perfect Material
,” Ph.D. thesis, University of Hong Kong, Hong Kong, China.
39.
Pasko
,
A.
,
Adzhiev
,
V.
,
Sourin
,
A.
, and
Savchenko
,
V.
,
1995
, “
Function Representation in Geometric Modeling: Concepts, Implementation and Applications
,”
Visual Comput.
,
11
(
8
), pp.
429
446
.
40.
Chiu
,
W.
, and
Tan
,
S.
,
2000
, “
Multiple Material Objects: From CAD Representation to Data Format for Rapid Prototyping
,”
Comput.-Aided Des.
,
32
(
12
), pp.
707
717
.
41.
ASTM
,
2012
, “
Standard Terminology for Additive Manufacturing Technologies
,” ASTM International, West Conshohocken, PA, Standard No.
F2792
.https://www.astm.org/Standards/F2792.htm
42.
Zhou
,
C.
,
Chen
,
Y.
,
Yang
,
Z.
, and
Khoshnevis
,
B.
,
2013
, “
Digital Material Fabrication Using Mask-Image-Projection-Based Stereolithography
,”
Rapid Prototyping J.
,
19
(
3
), pp.
153
165
.
43.
Huang
,
P.
,
Deng
,
D.
, and
Chen
,
Y.
,
2013
, “
Modeling and Fabrication of Heterogeneous Three-Dimensional Objects Based on Additive Manufacturing
,”
ASME
Paper No. IMECE2013-65724.
44.
Leu
,
M. C.
,
Deuser
,
B. K.
,
Tang
,
L.
,
Landers
,
R. G.
,
Hilmas
,
G. E.
, and
Watts
,
J. L.
,
2012
, “
Freeze-Form Extrusion Fabrication of Functionally Graded Materials
,”
CIRP Ann.-Manuf. Technol.
,
61
(
1
), pp.
223
226
.
45.
Khalil
,
S.
,
Nam
,
J.
, and
Sun
,
W.
,
2005
, “
Multi-Nozzle Deposition for Construction of 3D Biopolymer Tissue Scaffolds
,”
Rapid Prototyping J.
,
11
(
1
), pp.
9
17
.
46.
Joshi
,
A.
,
Patnaik
,
A.
,
Gangil
,
B.
, and
Kumar
,
S.
,
2012
, “
Laser Assisted Rapid Manufacturing Technique for the Manufacturing of Functionally Graded Materials
,”
Students Conference on Engineering and Systems
(
SCES
), Allahabad, India, Mar. 16–18, pp.
1
3
.
47.
Kumar
,
S.
, and
Pityana
,
S.
,
2011
, “
Laser-Based Additive Manufacturing of Metals
,”
Adv. Mater. Res.
,
227
, pp.
92
95
.
48.
Stratasys
, 2018, “
Objet500 connex3 white paper
,” Stratasys, Eden Prairie, MN, accessed Jan. 10,
2016
, http://web.stratasys.com/rs/objet/images/SSYS-WP-Objet500 20Connex3.pdf
49.
Boparai
,
K. S.
,
Boparai
,
K. S.
,
Singh
,
R.
,
Singh
,
R.
,
Singh
,
H.
, and
Singh
,
H.
,
2016
, “
Development of Rapid Tooling Using Fused Deposition Modeling: A Review
,”
Rapid Prototyping J.
,
22
(
2
), pp.
281
299
.
50.
Mumtaz
,
K. A.
, and
Hopkinson
,
N.
,
2007
, “
Laser Melting Functionally Graded Composition of Waspaloy and Zirconia Powders
,”
J. Mater. Sci.
,
42
(
18
), pp.
7647
7656
.
51.
Fessler
,
J.
,
Nickel
,
A.
,
Link
,
G.
,
Prinz
,
F.
, and
Fussell
,
P.
,
1997
, “
Functional Gradient Metallic Prototypes Through Shape Deposition Manufacturing
,”
Solid Freeform Fabrication Symposium
(
SFF
), Austin, TX, Aug. 11–13, pp.
521
528
.https://sffsymposium.engr.utexas.edu/Manuscripts/1997/1997-61-Fessler.pdf
52.
Muller
,
P.
,
Mognol
,
P.
, and
Hascoët
,
J.-Y.
,
2013
, “
Modeling and Control of a Direct Laser Powder Deposition Process for Functionally Graded Materials (FGM) Parts Manufacturing
,”
J. Mater. Process. Technol.
,
213
(
5
), pp.
685
692
.
53.
Wilson
,
J. M.
, and
Shin
,
Y. C.
,
2012
, “
Microstructure and Wear Properties of Laser-Deposited Functionally Graded Inconel 690 Reinforced With TIC
,”
Surf. Coat. Technol.
,
207
, pp.
517
522
.
54.
Beal
,
V.
,
Erasenthiran
,
P.
,
Hopkinson
,
N.
,
Dickens
,
P.
, and
Ahrens
,
C.
,
2006
, “
The Effect of Scanning Strategy on Laser Fusion of Functionally Graded h13/Cu Materials
,”
Int. J. Adv. Manuf. Technol.
,
30
(
9–10
), pp.
844
852
.
55.
Su
,
W.-N.
,
2002
, “
Layered Fabrication of Tool Steel and Functionally Graded Materials With a ND: Yag Pulsed Laser
,”
Ph.D. thesis
, Loughborough University, Loughborough, UK.https://dspace.lboro.ac.uk/dspace-jspui/handle/2134/6923
56.
Mumtaz
,
K. A.
,
Erasenthiran
,
P.
, and
Hopkinson
,
N.
,
2008
, “
High Density Selective Laser Melting of Waspaloy®
,”
J. Mater. Process. Technol.
,
195
(
1–3
), pp.
77
87
.
57.
Liu
,
W.
, and
DuPont
,
J.
,
2003
, “
Fabrication of Functionally Graded Tic/Ti Composites by Laser Engineered Net Shaping
,”
Scr. Mater.
,
48
(
9
), pp.
1337
1342
.
58.
Chung
,
H.
, and
Das
,
S.
,
2008
, “
Functionally Graded Nylon-11/Silica Nanocomposites Produced by Selective Laser Sintering
,”
Mater. Sci. Eng.: A
,
487
(
1–2
), pp.
251
257
.
59.
Hascoët
,
J.
,
Muller
,
P.
, and
Mognol
,
P.
,
2011
, “
Manufacturing of Complex Parts With Continuous Functionally Graded Materials (FGM)
,”
Solid Freeform Fabrication Symposium
(
SFF
), Austin, TX, Aug. 8–10, pp.
557
569
.https://sffsymposium.engr.utexas.edu/Manuscripts/2011/2011-44-Hascoet.pdf
60.
Sitthi-Amorn
,
P.
,
Ramos
,
J. E.
,
Wangy
,
Y.
,
Kwan
,
J.
,
Lan
,
J.
,
Wang
,
W.
, and
Matusik
,
W.
,
2015
, “
Multifab: A Machine Vision Assisted Platform for Multi-Material 3D Printing
,”
ACM Trans. Graph. (TOG)
,
34
(
4
), p.
129
.
61.
Perumal
,
C. V.
, and
Wigdor
,
D.
,
2016
, “
Foldem: Heterogeneous Object Fabrication Via Selective Ablation of Multi-Material Sheets
,”
CHI Conference on Human Factors in Computing Systems
, San Jose, CA, May 7–12, pp.
5765
5775
.
62.
Wang
,
G.
,
Yao
,
L.
,
Wang
,
W.
,
Ou
,
J.
,
Cheng
,
C.-Y.
, and
Ishii
,
H.
,
2016
, “
Xprint: A Modularized Liquid Printer for Smart Materials Deposition
,”
CHI Conference on Human Factors in Computing Systems
, San Jose, CA, May 7–12, pp.
5743
5752
.
63.
Duro-Royo
,
J.
,
Mogas-Soldevila
,
L.
, and
Oxman
,
N.
,
2015
, “
Flow-Based Fabrication: An Integrated Computational Workflow for Design and Digital Additive Manufacturing of Multifunctional Heterogeneously Structured Objects
,”
Comput.-Aided Des.
,
69
, pp.
143
154
.
64.
Das
,
S.
,
Cormier
,
D.
, and
Williams
,
S.
,
2015
, “
Potential for Multi-Functional Additive Manufacturing Using Pulsed Photonic Sintering
,”
Procedia Manuf.
,
1
, pp.
366
377
.
65.
Dey
,
H.
,
Ashfaq
,
M.
,
Bhaduri
,
A.
, and
Rao
,
K. P.
,
2009
, “
Joining of Titanium to 304l Stainless Steel by Friction Welding
,”
J. Mater. Process. Technol.
,
209
(
18–19
), pp.
5862
5870
.
66.
Kale
,
G.
,
Patil
,
R.
, and
Gawade
,
P.
,
1998
, “
Interdiffusion Studies in Titanium–304 Stainless Steel System
,”
J. Nucl. Mater.
,
257
(
1
), pp.
44
50
.
67.
Reichardt
,
A.
,
Dillon
,
R. P.
,
Borgonia
,
J. P.
,
Shapiro
,
A. A.
,
McEnerney
,
B. W.
,
Momose
,
T.
, and
Hosemann
,
P.
,
2016
, “
Development and Characterization of Ti-6al-4v to 304l Stainless Steel Gradient Components Fabricated With Laser Deposition Additive Manufacturing
,”
Mater. Des.
,
104
, pp. 404–413.
68.
Duballet
,
R.
,
Gosselin
,
C.
, and
Roux
,
P.
,
2015
, “
Additive Manufacturing and Multi-Objective Optimization of Graded Polystyrene Aggregate Concrete Structures
,”
Modelling Behaviour
,
Springer
, Cham, Switzerland, pp.
225
235
.
69.
Gupta
,
A.
, and
Talha
,
M.
,
2015
, “
Recent Development in Modeling and Analysis of Functionally Graded Materials and Structures
,”
Prog. Aerosp. Sci.
,
79
, pp.
1
14
.
70.
Li
,
M.
,
Tian
,
X.
, and
Chen
,
X.
,
2009
, “
A Brief Review of Dispensing-Based Rapid Prototyping Techniques in Tissue Scaffold Fabrication: Role of Modeling on Scaffold Properties Prediction
,”
Biofabrication
,
1
(
3
), p.
032001
.
71.
Leukers
,
B.
,
Gülkan
,
H.
,
Irsen
,
S. H.
,
Milz
,
S.
,
Tille
,
C.
,
Schieker
,
M.
, and
Seitz
,
H.
,
2005
, “
Hydroxyapatite Scaffolds for Bone Tissue Engineering Made by 3D Printing
,”
J. Mater. Sci.: Mater. Med.
,
16
(
12
), pp.
1121
1124
.
72.
Cox
,
S. C.
,
Thornby
,
J. A.
,
Gibbons
,
G. J.
,
Williams
,
M. A.
, and
Mallick
,
K. K.
,
2015
, “
3D Printing of Porous Hydroxyapatite Scaffolds Intended for Use in Bone Tissue Engineering Applications
,”
Mater. Sci. Eng.: C
,
47
, pp.
237
247
.
73.
Doubrovski
,
E.
,
Tsai
,
E.
,
Dikovsky
,
D.
,
Geraedts
,
J.
,
Herr
,
H.
, and
Oxman
,
N.
,
2015
, “
Voxel-Based Fabrication Through Material Property Mapping: A Design Method for Bitmap Printing
,”
Comput.-Aided Des.
,
60
, pp.
3
13
.
74.
Willis
,
K.
,
Brockmeyer
,
E.
,
Hudson
,
S.
, and
Poupyrev
,
I.
,
2012
, “
Printed Optics: 3D Printing of Embedded Optical Elements for Interactive Devices
,”
25th Annual ACM Symposium on User Interface Software and Technology
(
UIST
), Cambridge, MA, Oct. 7–10, pp.
589
598
.
75.
Wang
,
L.
,
Lau
,
J.
,
Thomas
,
E. L.
, and
Boyce
,
M. C.
,
2011
, “
Co-Continuous Composite Materials for Stiffness, Strength, and Energy Dissipation
,”
Adv. Mater.
,
23
(
13
), pp.
1524
1529
.
76.
Skouras
,
M.
,
Thomaszewski
,
B.
,
Coros
,
S.
,
Bickel
,
B.
, and
Gross
,
M.
,
2013
, “
Computational Design of Actuated Deformable Characters
,”
ACM Trans. Graph. (TOG)
,
32
(
4
), p.
82
.
77.
Bartlett
,
N. W.
,
Tolley
,
M. T.
,
Overvelde
,
J. T.
,
Weaver
,
J. C.
,
Mosadegh
,
B.
,
Bertoldi
,
K.
,
Whitesides
,
G. M.
, and
Wood
,
R. J.
,
2015
, “
A 3D-Printed, Functionally Graded Soft Robot Powered by Combustion
,”
Science
,
349
(
6244
), pp.
161
165
.
78.
Studart
,
A. R.
,
2016
, “
Additive Manufacturing of Biologically-Inspired Materials
,”
Chem. Soc. Rev.
,
45
(
2
), pp.
359
376
.
79.
Kumar
,
V.
, and
Dutta
,
D.
,
1998
, “
An Approach to Modeling & Representation of Heterogeneous Objects
,”
ASME J. Mech. Des.
,
120
(
4
), pp.
659
667
.
80.
Rossignac
,
J. R.
, and
Requicha
,
A. A.
,
1999
, “
Solid Modeling
,” Georgia Institute of Technology, Atlanta, GA, Technical Report No. GIT-GVU-99-09.
81.
Requicha
,
A. A.
,
1980
,
Representations of Rigid Solid Objects
,
Springer
, Berlin.
82.
Kou
,
X.
,
2006
, “
Computer-Aided Design of Heterogeneous Objects
,”
Ph.D. thesis
, University of Hong Kong, Hong Kong, China.https://dl.acm.org/citation.cfm?id=1237090
83.
Morgan
,
O.
,
Upreti
,
K.
,
Subbarayan
,
G.
, and
Anderson
,
D.
,
2015
, “
Higeom: A Symbolic Framework for a Unified Function Space Representation of Trivariate Solids for Isogeometric Analysis
,”
Comput.-Aided Des.
,
65
, pp.
34
50
.
84.
Shah
,
J. J.
, and
Mäntylä
,
M.
,
1995
,
Parametric and Feature-Based CAD/CAM: Concepts, Techniques, and Applications
,
Wiley
, New York.
85.
Biswas
,
A.
,
Shapiro
,
V.
, and
Tsukanov
,
I.
,
2004
, “
Heterogeneous Material Modeling With Distance Fields
,”
Comput. Aided Geometric Des.
,
21
(
3
), pp.
215
242
.
86.
Bhashyam
,
S.
,
Hoon Shin
,
K.
, and
Dutta
,
D.
,
2000
, “
An Integrated CAD System for Design of Heterogeneous Objects
,”
Rapid Prototyping J.
,
6
(
2
), pp.
119
135
.
87.
Shin
,
K.-H.
, and
Dutta
,
D.
,
2001
, “
Constructive Representation of Heterogeneous Objects
,”
ASME J. Comput. Inf. Sci. Eng.
,
1
(
3
), pp.
205
217
.
88.
Wu
,
X.
,
Liu
,
W.
, and
Wang
,
M. Y.
,
2008
, “
A CAD Modeling System for Heterogeneous Object
,”
Adv. Eng. Software
,
39
(
5
), pp.
444
453
.
89.
Kou
,
X.
, and
Tan
,
S.
,
2012
, “
Microstructural Modelling of Functionally Graded Materials Using Stochastic Voronoi Diagram and b-Spline Representations
,”
Int. J. Comput. Integr. Manuf.
,
25
(
2
), pp.
177
188
.
90.
Rosen
,
D. W.
,
Jeong
,
N.
, and
Wang
,
Y.
,
2013
, “
A Method for Reverse Engineering of Material Microstructure for Heterogeneous CAD
,”
Comput.-Aided Des.
,
45
(
7
), pp.
1068
1078
.
91.
Liu
,
X.
, and
Shapiro
,
V.
,
2015
, “
Random Heterogeneous Materials Via Texture Synthesis
,”
Comput. Mater. Sci.
,
99
, pp.
177
189
.
92.
Latief
,
F.
,
Biswal
,
B.
,
Fauzi
,
U.
, and
Hilfer
,
R.
,
2010
, “
Continuum Reconstruction of the Pore Scale Microstructure for Fontainebleau Sandstone
,”
Phys. A: Stat. Mech. Appl.
,
389
(
8
), pp.
1607
1618
.
93.
Ghosh
,
S.
, and
Dimiduk
,
D. M.
,
2011
,
Computational Methods for Microstructure-Property Relationships
,
Springer
, New York.
94.
McDowell
,
D.
,
Ghosh
,
S.
, and
Kalidindi
,
S.
,
2011
, “
Representation and Computational Structure-Property Relations of Random Media
,”
JOM J. Miner., Met. Mater. Soc.
,
63
(
3
), pp.
45
51
.
95.
Li
,
D.
,
2014
, “
Review of Structure Representation and Reconstruction on Mesoscale and Microscale
,”
JOM
,
66
(
3
), pp.
444
454
.
96.
Bostanabad
,
R.
,
Bui
,
A. T.
,
Xie
,
W.
,
Apley
,
D. W.
, and
Chen
,
W.
,
2016
, “
Stochastic Microstructure Characterization and Reconstruction Via Supervised Learning
,”
Acta Mater.
,
103
, pp.
89
102
.
97.
Liu
,
H.
,
2000
, “
Algorithms for Design and Interrogation of Functionally Graded Material Solids
,”
Ph.D. thesis
, Massachusetts Institute of Technology, Cambridge, MA.https://dspace.mit.edu/handle/1721.1/9044
98.
Jackson
,
T. R.
,
2000
, “
Analysis of Functionally Graded Material Object Representation Methods
,”
Ph.D. thesis
, Massachusetts Institute of Technology, Cambridge, MA.https://dspace.mit.edu/handle/1721.1/9032
99.
Hughes
,
J. F.
,
van Dam
,
A.
,
McGuire
,
M.
,
Sklar
,
D. F.
,
Foley
,
J. D.
,
Feiner
,
S. K.
, and
Akeley
,
K.
,
2013
,
Computer Graphics: Principles and Practice
, 3rd ed.,
Pearson Education
, Upper saddle river, NJ.
100.
Adzhiev
,
V.
,
Kartasheva
,
E.
,
Kunii
,
T.
,
Pasko
,
A.
, and
Schmitt
,
B.
,
2002
, “
Cellular-Functional Modeling of Heterogeneous Objects
,”
Seventh ACM Symposium on Solid Modeling and Applications
(
SMA
), Saarbrücken, Germany, June 17–21, pp.
192
203
.
101.
Park
,
S.-M.
,
Crawford
,
R. H.
, and
Beaman
,
J. J.
,
2001
, “
Volumetric Multi-Texturing for Functionally Gradient Material Representation
,”
Sixth ACM Symposium on Solid Modeling and Applications
(
SMA
), Ann Arbor, MI, June 6–8, pp.
216
224
.
102.
Kumar
,
V.
, and
Dutta
,
D.
,
1997
, “
An Approach to Modeling Multi-Material Objects
,”
Fourth ACM Symposium on Solid Modeling and Applications
(
SMA
), Atlanta, GA, May 14–16, pp.
336
345
.
103.
Chandru
,
V.
,
Manohar
,
S.
, and
Prakash
,
C. E.
,
1995
, “
Voxel-Based Modeling for Layered Manufacturing
,”
Comput. Graph. Appl.
,
15
(
6
), pp.
42
47
.
104.
Shin
,
K.-H.
,
2002
, “
Representation and Process Planning for Layered Manufacturing of Heterogeneous Objects
,”
Ph.D. thesis
, University of Michigan, Ann Arbor, MI.https://deepblue.lib.umich.edu/handle/2027.42/130555
105.
Hopkinson
,
N.
,
Hague
,
R.
, and
Dickens
,
P.
,
2006
,
Rapid Manufacturing: An Industrial Revolution for the Digital Age
, Wiley, West Sussex, UK.
106.
You
,
Y.
,
Kou
,
X.
, and
Tan
,
S.
,
2015
, “
Adaptive Meshing for Finite Element Analysis of Heterogeneous Materials
,”
Comput.-Aided Des.
,
62
, pp.
176
189
.
107.
Kou
,
X.
, and
Tan
,
S.
,
2007
, “
Heterogeneous Object Modeling: A Review
,”
Comput.-Aided Des.
,
39
(
4
), pp.
284
301
.
108.
Kou
,
X.
,
Tan
,
S.
, and
Sze
,
W.
,
2006
, “
Modeling Complex Heterogeneous Objects With Non-Manifold Heterogeneous Cells
,”
Comput.-Aided Des.
,
38
(
5
), pp.
457
474
.
109.
Keen
,
A. A.
,
1993
, “
A Non-Manifold Shape Representation
,” Ph.D. thesis, Texas A & M University, College Station, TX.
110.
Weiler
,
K.
,
1988
, “
The Radial Edge Structure: A Topological Representation for Non-Manifold Geometric Boundary Modeling
,”
Geometric Modeling CAD Applications
, Elsevier Science, North Holland, The Netherlands, pp.
3
36
.
111.
Wang
,
C. C.
,
Leung
,
Y.-S.
, and
Chen
,
Y.
,
2010
, “
Solid Modeling of Polyhedral Objects by Layered Depth-Normal Images on the GPU
,”
Comput.-Aided Des.
,
42
(
6
), pp.
535
544
.
112.
Pasko
,
A.
,
Adzhiev
,
V.
,
Schmitt
,
B.
, and
Schlick
,
C.
,
2001
, “
Constructive Hypervolume Modeling
,”
Graphical Models
,
63
(
6
), pp.
413
442
.
113.
Samanta
,
K.
, and
Koc
,
B.
,
2008
, “
Feature-Based Material Blending for Heterogeneous Object Modeling
,”
Heterogeneous Objects Modelling and Applications
,
Springer
, Berlin, pp.
142
166
.
114.
Kou
,
X.
, and
Tan
,
S.
,
2005
, “
A Hierarchical Representation for Heterogeneous Object Modeling
,”
Comput.-Aided Des.
,
37
(
3
), pp.
307
319
.
115.
Gupta
,
V.
, and
Tandon
,
P.
,
2015
, “
Heterogeneous Object Modeling With Material Convolution Surfaces
,”
Comput.-Aided Des.
,
62
, pp.
236
247
.
116.
Kou
,
X.
, and
Tan
,
S.
,
2008
, “
Heterogeneous Object Design: An Integrated Cax Perspective
,”
Heterogeneous Objects Modelling and Applications
,
Springer
, Berlin, pp.
42
59
.
117.
Gupta
,
V.
,
Bajpai
,
V.
, and
Tandon
,
P.
,
2014
, “
Slice Generation and Data Retrieval Algorithm for Rapid Manufacturing of Heterogeneous Objects
,”
Comput.-Aided Des. Appl.
,
11
(
3
), pp.
255
262
.
118.
Jin
,
X.
, and
Tai
,
C.-L.
,
2002
, “
Analytical Methods for Polynomial Weighted Convolution Surfaces With Various Kernels
,”
Comput. Graph.
,
26
(
3
), pp.
437
447
.
119.
Liu
,
H.
,
Maekawa
,
T.
,
Patrikalakis
,
N.
,
Sachs
,
E.
, and
Cho
,
W.
,
2004
, “
Methods for Feature-Based Design of Heterogeneous Solids
,”
Comput.-Aided Des.
,
36
(
12
), pp.
1141
1159
.
120.
Rvachev
,
V. L.
,
Sheiko
,
T. I.
,
Shapiro
,
V.
, and
Tsukanov
,
I.
,
2001
, “
Transfinite Interpolation Over Implicitly Defined Sets
,”
Comput. Aided Geom. Des.
,
18
(
3
), pp.
195
220
.
121.
Shepard
,
D.
,
1968
, “
A Two-Dimensional Interpolation Function for Irregularly-Spaced Data
,”
23rd ACM National Conference
, New York, Aug. 27–29, pp.
517
524
.
122.
Kou
,
X.
, and
Tan
,
S.
,
2009
, “
Robust and Efficient Algorithms for Rapid Prototyping of Heterogeneous Objects
,”
Rapid Prototyping J.
,
15
(
1
), pp.
5
18
.
123.
Jaiswal
,
P.
,
Rai
,
R.
, and
Nelaturi
,
S.
,
2016
, “Hysteresis in Interoperability: Workflows Involving Multiple Representations of 3D Models,”
ASME
Paper No. DETC2016-59700.
124.
Hoffmann
,
C. M.
,
Shapiro
,
V.
, and
Srinivasan
,
V.
,
2011
, “
Geometric Interoperability for Resilient Manufacturing
,” Purdue University, West Lafayette, IN, Technical Report No. TR-11-015.
125.
Hoffmann
,
C.
,
Shapiro
,
V.
, and
Srinivasan
,
V.
,
2014
, “
Geometric Interoperability Via Queries
,”
Comput.-Aided Des.
,
46
, pp.
148
159
.
126.
Kulkarni
,
P.
,
Marsan
,
A.
, and
Dutta
,
D.
,
2000
, “
A Review of Process Planning Techniques in Layered Manufacturing
,”
Rapid Prototyping J.
,
6
(
1
), pp.
18
35
.
127.
Cheng
,
W.
,
Fuh
,
J.
,
Nee
,
A.
,
Wong
,
Y.
,
Loh
,
H.
, and
Miyazawa
,
T.
,
1995
, “
Multi-Objective Optimization of Part-Building Orientation in Stereolithography
,”
Rapid Prototyping J.
,
1
(
4
), pp.
12
23
.
128.
Zhang
,
X.
,
Le
,
X.
,
Panotopoulou
,
A.
,
Whiting
,
E.
, and
Wang
,
C. C.
,
2015
, “
Perceptual Models of Preference in 3D Printing Direction
,”
ACM Trans. Graph. (TOG)
,
34
(
6
), p.
215
.
129.
Shin
,
K.-H.
,
Natu
,
H.
,
Dutta
,
D.
, and
Mazumder
,
J.
,
2003
, “
A Method for the Design and Fabrication of Heterogeneous Objects
,”
Mater. Des.
,
24
(
5
), pp.
339
353
.
130.
Xu
,
A.
, and
Shaw
,
L. L.
,
2005
, “
Equal Distance Offset Approach to Representing and Process Planning for Solid Freeform Fabrication of Functionally Graded Materials
,”
Comput.-Aided Des.
,
37
(
12
), pp.
1308
1318
.
131.
Muller
,
P.
,
Hascoet
,
J.-Y.
, and
Mognol
,
P.
,
2014
, “
Toolpaths for Additive Manufacturing of Functionally Graded Materials (FGM) Parts
,”
Rapid Prototyping J.
,
20
(
6
), pp.
511
522
.
132.
Birman
,
V.
, and
Byrd
,
L. W.
,
2007
, “
Modeling and Analysis of Functionally Graded Materials and Structures
,”
ASME Appl. Mech. Rev.
,
60
(
5
), pp.
195
216
.
133.
Nelaturi
,
S.
, and
Shapiro
,
V.
,
2015
, “
Representation and Analysis of Additively Manufactured Parts
,”
Comput.-Aided Des.
,
67
(
C
), pp.
13
23
.
134.
Moser
,
D.
,
Fish
,
S.
,
Beaman
,
J.
, and
Murthy
,
J.
,
2014
, “
Multi-Layer Computational Modeling of Selective Laser Sintering Processes
,”
ASME
Paper No. IMECE2014-37535.
135.
Ma
,
L.
,
Fong
,
J.
,
Lane
,
B.
,
Moylan
,
S.
,
Filliben
,
J.
,
Heckert
,
A.
, and
Levine
,
L.
,
2015
, “
Using Design of Experiments in Finite Element Modeling to Identify Critical Variables for Laser Powder Bed Fusion
,”
International Solid Freeform Fabrication Symposium
(
SFF
), Austin, TX, Aug. 10–12, pp. 219–228.https://sffsymposium.engr.utexas.edu/sites/default/files/2015/2015-18-Ma.pdf
136.
Lopez
,
F.
,
Witherell
,
P.
, and
Lane
,
B.
,
2016
, “
Identifying Uncertainty in Laser Powder Bed Fusion Additive Manufacturing Models
,”
ASME J. Mech. Des.
,
138
(
11
), p.
114502
.
137.
Bian
,
L.
,
Thompson
,
S. M.
, and
Shamsaei
,
N.
,
2015
, “
Mechanical Properties and Microstructural Features of Direct Laser-Deposited Ti-6al-4v
,”
JOM
,
67
(
3
), pp.
629
638
.
138.
Jackson
,
T. R.
,
Cho
,
W.
,
Patrikalakis
,
N. M.
, and
Sachs
,
E. M.
,
2002
, “
Memory Analysis of Solid Model Representations for Heterogeneous Objects
,”
ASME J. Comput. Inf. Sci. Eng.
,
2
(
1
), pp.
1
10
.
139.
Jaiswal
,
P.
,
Bajad
,
A. B.
,
Nanjundaswamy
,
V. G.
,
Verma
,
A.
, and
Rai
,
R.
,
2013
, “
Creative Exploration of Scaled Product Family 3D Models Using Gesture Based Conceptual Computer Aided Design (C-CAD) Tool
,”
ASME
Paper No. DETC2013-12279.
140.
Nanjundaswamy
,
V.
,
Kulkarni
,
A.
,
Chen
,
Z.
,
Jaiswal
,
P.
,
Verma
,
A.
, and
Rai
,
R.
,
2013
, “
Intuitive 3D Computer-Aided Design (CAD) System With Multimodal Interfaces
,”
ASME
Paper No. DETC2013-12277.
141.
Shankar
,
S. S.
, and
Rai
,
R.
,
2014
, “
Human Factors Study on the Usage of BCI Headset for 3D CAD Modeling
,”
Comput.-Aided Des.
,
54
, pp.
51
55
.
142.
Jain
,
A.
,
Thormählen
,
T.
,
Ritschel
,
T.
, and
Seidel
,
H.-P.
,
2012
, “
Material Memex: Automatic Material Suggestions for 3D Objects
,”
ACM Trans. Graph. (TOG)
,
31
(
6
), p.
143
.
143.
Jaiswal
,
P.
,
Huang
,
J.
, and
Rai
,
R.
,
2015
, “
Assembly-Based Conceptual 3D Modeling With Unlabeled Components Using Probabilistic Factor Graph
,”
Comput.-Aided Des.
,
74
, pp.
45
54
.
144.
Zhang
,
B.
, and
Rai
,
R.
,
2014
, “
Materials Follow Form and Function: Probabilistic Factor Graph Approach for Automatic Material Assignments to 3D Objects
,”
ASME
Paper No. DETC2014-34064.
145.
Chakraborty
,
A.
,
Gopalakrishnan
,
S.
, and
Reddy
,
J.
,
2003
, “
A New Beam Finite Element for the Analysis of Functionally Graded Materials
,”
Int. J. Mech. Sci.
,
45
(
3
), pp.
519
539
.
146.
Li
,
X.-F.
,
2008
, “
A Unified Approach for Analyzing Static and Dynamic Behaviors of Functionally Graded Timoshenko and Euler–Bernoulli Beams
,”
J. Sound Vib.
,
318
(
4–5
), pp.
1210
1229
.
147.
Chakraborty
,
A.
, and
Gopalakrishnan
,
S.
,
2003
, “
A Spectrally Formulated Finite Element for Wave Propagation Analysis in Functionally Graded Beams
,”
Int. J. Solids Struct.
,
40
(
10
), pp.
2421
2448
.
148.
Pan
,
E.
,
2003
, “
Exact Solution for Functionally Graded Anisotropic Elastic Composite Laminates
,”
J. Compos. Mater.
,
37
(
21
), pp.
1903
1920
.
149.
Soldatos
,
K. P.
,
2004
, “
Complex Potential Formalisms for Bending of Inhomogeneous Monoclinic Plates Including Transverse Shear Deformation
,”
J. Mech. Phys. Solids
,
52
(
2
), pp.
341
357
.
150.
Vel
,
S. S.
, and
Batra
,
R.
,
2002
, “
Exact Solution for Thermoelastic Deformations of Functionally Graded Thick Rectangular Plates
,”
AIAA J.
,
40
(
7
), pp.
1421
1433
.
151.
Jabbari
,
M.
,
Sohrabpour
,
S.
, and
Eslami
,
M.
,
2002
, “
Mechanical and Thermal Stresses in a Functionally Graded Hollow Cylinder Due to Radially Symmetric Loads
,”
Int. J. Pressure Vessels Piping
,
79
(
7
), pp.
493
497
.
152.
Pelletier
,
J. L.
, and
Vel
,
S. S.
,
2006
, “
An Exact Solution for the Steady-State Thermoelastic Response of Functionally Graded Orthotropic Cylindrical Shells
,”
Int. J. Solids Struct.
,
43
(
5
), pp.
1131
1158
.
153.
Della Croce
,
L.
, and
Venini
,
P.
,
2004
, “
Finite Elements for Functionally Graded Reissner–Mindlin Plates
,”
Comput. Methods Appl. Mech. Eng.
,
193
(
9–11
), pp.
705
725
.
154.
Bhangale
,
R. K.
,
Ganesan
,
N.
, and
Padmanabhan
,
C.
,
2006
, “
Linear Thermoelastic Buckling and Free Vibration Behavior of Functionally Graded Truncated Conical Shells
,”
J. Sound Vib.
,
292
(
1–2
), pp.
341
371
.
155.
Gao
,
W.
,
Zhang
,
Y.
,
Ramanujan
,
D.
,
Ramani
,
K.
,
Chen
,
Y.
,
Williams
,
C. B.
,
Wang
,
C. C.
,
Shin
,
Y. C.
,
Zhang
,
S.
, and
Zavattieri
,
P. D.
,
2015
, “
The Status, Challenges, and Future of Additive Manufacturing in Engineering
,”
Comput.-Aided Des.
,
69
, pp.
65
89
.
156.
Moore
,
J. P.
, and
Williams
,
C. B.
,
2008
, “
Fatigue Characterization of 3D Printed Elastomer Material
,”
19th Annual International Solid Freeform Fabrication Symposium
(
SFF
), Austin, TX, Aug. 4–6, pp.
641
655
.https://pdfs.semanticscholar.org/8065/b9420b6541f1d984ad1bdcc6ca1b72d84266.pdf
157.
Elishakoff
,
I.
,
Gentilini
,
C.
, and
Viola
,
E.
,
2005
, “
Three-Dimensional Analysis of an All-Round Clamped Plate Made of Functionally Graded Materials
,”
Acta Mech.
,
180
(
1–4
), pp.
21
36
.
158.
Huang
,
J.
,
Fadel
,
G. M.
,
Blouin
,
V. Y.
, and
Grujicic
,
M.
,
2002
, “
Bi-Objective Optimization Design of Functionally Gradient Materials
,”
Mater. Des.
,
23
(
7
), pp.
657
666
.
159.
Yang
,
J.
,
Liew
,
K.
,
Wu
,
Y.
, and
Kitipornchai
,
S.
,
2006
, “
Thermo-Mechanical Post-Buckling of FGM Cylindrical Panels With Temperature-Dependent Properties
,”
Int. J. Solids Struct.
,
43
(
2
), pp.
307
324
.
160.
Praveen
,
G.
, and
Reddy
,
J.
,
1998
, “
Nonlinear Transient Thermoelastic Analysis of Functionally Graded Ceramic-Metal Plates
,”
Int. J. Solids Struct.
,
35
(
33
), pp.
4457
4476
.
You do not currently have access to this content.