Capturing the strategy followed during a coordinate measuring machine (CMM) inspection planning session has been an extremely challenging issue due to the time-consuming nature of traditional methods, such as interviewing experts and technical documents data mining. This paper presents a methodology demonstrating how a motion capture-based system can facilitate direct and nonintrusive CMM operator logging for capturing planning strategies and representing in knowledge formats. With the use of recorded motion data, embedded knowledge and expertise can be captured automatically and formalized in various formats such as motion trajectory graphs, inspection plans, integrated definition (IDEF) model diagrams, and other representations. Additionally, a part program can be generated for driving a CMM to execute component measurement. The system's outputs can be used to help understand how a CMM inspection strategy is planned, as well as training aids for inexperienced operators and the rapid generation of part programs.

References

References
1.
Martínez-Pellitero
,
S.
,
Barreiro
,
J.
,
Cuesta
,
E.
, and
Raya
,
F.
,
2016
, “
Frame for Automatizing Inspection Planning Strategies in Coordinate Metrology: Macro Plan Case
,”
J. Manuf. Technol. Res.
,
8
(
3–4
), pp.
1
23
.
2.
Anagnostakis
,
D.
,
Ritchie
,
J.
,
Lim
,
T.
,
Sivanathan
,
A.
,
Dewar
,
R.
,
Sung
,
R.
,
Bosch
,
F.
, and
Carozza
,
L.
,
2016
, “
Knowledge Capture in CMM Inspection Planning: Barriers and Challenges
,”
Procedia CIRP
,
52
, pp.
216
221
.
3.
Barreiro
,
J.
,
Martinez
,
S.
,
Cuesta
,
E.
, and
Alvarez
,
B.
,
2010
, “
Conceptual Principles and Ontology for a KBE Implementation in Inspection Planning
,”
Int. J. Mechatronics Manuf. Syst.
,
3
(
5/6
), p.
451
.
4.
Anagnostakis
,
D.
,
Ritchie
,
J.
,
Lim
,
T.
,
Sung
,
R.
, and
Dewar
,
R.
,
2017
, “A Virtual CMM Inspection Tool for Capturing Planning Strategies,”
ASME
Paper No. DETC2017-67519.
5.
Lim
,
C. P.
, and
Menq
,
C.-H.
,
1994
, “
CMM Feature Accessibility and Path Generation
,”
Int. J. Prod. Res.
,
32
(
3
), pp.
597
618
.
6.
Ziemian
,
C. W.
, and
Medeiros
,
D. J.
,
1997
, “
Automated Feature Accessibility Algorithm for Inspection on a Coordinate Measuring Machine
,”
Int. J. Prod. Res.
,
35
(
10
), pp.
2839
2856
.
7.
Limaiem
,
A.
, and
EIMaraghy
,
H. A.
,
2000
, “
Integrated Accessibility Analysis and Measurement Operations Sequencing for CMMs
,”
J. Manuf. Syst.
,
19
(
2
), pp.
83
93
.
8.
Vafaeesefat
,
A.
, and
Elmaraghy
,
H. A.
,
2000
, “
Automated Accessibility Analysis and Measurement Clustering for CMMs
,”
Int. J. Prod. Res.
,
38
(
10
), pp.
2215
2231
.
9.
Kweon
,
S.
, and
Medeiros
,
D. J.
,
1998
, “
Part Orientations for CMM Inspection Using Dimensioned Visibility Maps
,”
Comput. Des.
,
30
(
9
), pp.
741
749
.
10.
Beg
,
J.
, and
Shunmugam
,
M. S.
,
2003
, “
Application of Fuzzy Logic in the Selection of Part Orientation and Probe Orientation Sequencing for Prismatic Parts
,”
Int. J. Prod. Res.
,
41
(
12
), pp.
2799
2815
.
11.
Osawa
,
S.
,
Busch
,
K.
,
Franke
,
M.
, and
Schwenke
,
H.
,
2005
, “
Multiple Orientation Technique for the Calibration of Cylindrical Workpieces on CMMs
,”
Precis. Eng.
,
29
(
1
), pp.
56
64
.
12.
Elkott
,
D. F.
,
Elmaraghy
,
H. A.
, and
Elmaraghy
,
W. H.
,
2002
, “
Automatic Sampling for CMM Inspection Planning of Free-Form Surfaces
,”
Int. J. Prod. Res.
,
40
(
11
), pp.
2653
2676
.
13.
Jiang
,
R. S.
,
Wang
,
W. H.
,
Zhang
,
D. H.
, and
Wang
,
Z. Q.
,
2016
, “
A Practical Sampling Method for Profile Measurement of Complex Blades
,”
Measurement
,
81
, pp.
57
65
.
14.
Zhang
,
Y.
,
Nee
,
A. Y. C.
,
Fuh
,
J. Y. H.
,
Neo
,
K.
, and
Loy
,
H.
,
1996
, “
A Neural Network Approach to Determining Optimal Inspection Sampling Size for CMM
,”
Comput. Integr. Manuf. Syst.
,
9
(
3
), pp.
161
169
.
15.
Weckenmann
,
A.
,
Eitzert
,
H.
,
Garmer
,
M.
, and
Weber
,
H.
,
1995
, “
Functionality-Oriented Evaluation and Sampling Strategy in Coordinate Metrology
,”
Precis. Eng.
,
17
(
4
), pp.
244
252
.
16.
Yu
,
M.
,
Zhang
,
Y.
,
Li
,
Y.
, and
Zhang
,
D.
,
2013
, “
Adaptive Sampling Method for Inspection Planning on CMM for Free-Form Surfaces
,”
Int. J. Adv. Manuf. Technol.
,
67
(
9–12
), pp.
1967
1975
.
17.
Yau
,
H.-T.
, and
Menq
,
C.-H.
,
1995
, “
Automated CMM Path Planning for Dimensional Inspection of Dies and Molds Having Complex Surfaces
,”
Int. J. Mach. Tools Manuf.
,
35
(
6
), pp.
861
876
.
18.
Albuquerque
,
V. A.
,
Liou
,
F. W.
, and
Mitchell
,
O. R.
,
2000
, “
Inspection Point Placement and Path Planning Algorithms for Automatic CMM Inspection
,”
Int. J. Comput. Integr. Manuf.
,
13
(
2
), pp.
107
120
.
19.
Han
,
Z.
,
Liu
,
S.
,
Yu
,
F.
,
Zhang
,
X.
, and
Zhang
,
G.
,
2017
, “
A 3D Measuring Path Planning Strategy for Intelligent CMMs Based on an Improved Ant Colony Algorithm
,”
Int. J. Adv. Manuf. Technol.
, 93(1–4), pp.
1487
1497
.
20.
Ainsworth
,
I.
,
Ristic
,
M.
, and
Brujic
,
D.
,
2000
, “
CAD-Based Measurement Path Planning for Free-Form Shapes Using Contact Probes
,”
Int. J. Adv. Manuf. Technol.
,
16
(
1
), pp.
23
31
.
21.
Negnevitsky
,
M.
,
2005
,
Artificial Intelligence: A Guide to Intelligent Systems
,
Pearson Education
,
Essex, UK
.
22.
Hammad Mian
,
S.
, and
Al-Ahmari
,
A.
,
2014
, “
New Developments in Coordinate Measuring Machines for Manufacturing Industries
,”
Int. J. Metrol. Qual. Eng.
,
5
(
1
), p.
101
.
23.
ElMaraghy
,
H.
, and
Gu
,
P.
,
1987
, “
Expert Inspection Planning System
,”
Ann. CIRP
,
36
(
1
), pp.
85
89
.
24.
Gu
,
P.
,
1994
, “
A Knowledge-Based Inspection Process Planning System for Coordinate Measuring Machines
,”
J. Intell. Manuf.
,
5
(
5
), pp.
351
363
.
25.
Hwang
,
I.
,
Lee
,
H.
, and
Ha
,
S.
,
2002
, “
Hybrid Neuro-Fuzzy Approach to the Generation of Measuring Points for Knowledge-Based Inspection Planning
,”
Int. J. Prod. Res.
,
40
(
11
), pp.
2507
2520
.
26.
Hussien
,
H. A.
,
Youssef
,
A. M.
, and
Shoukry
,
M. K.
,
2012
, “
Automated Inspection Planning System for CMMs
,” International Conference on Engineering and Technology (
ICET
), Cairo, Egypt, Oct. 11–12.
27.
Kamrani
,
A.
,
Abouel Nasr
,
E.
,
Al-Ahmari
,
A.
,
Abdulhameed
,
O.
, and
Mian
,
S. H.
,
2014
, “
Feature-Based Design Approach for Integrated CAD and Computer-Aided Inspection Planning
,”
Int. J. Adv. Manuf. Technol.
,
76
(
9–12
), pp.
2159
2183
.
28.
Stojadinovic
,
S. M.
,
Majstorovic
,
V. D.
,
Durakbasa
,
N. M.
, and
Sibalija
,
T. V.
,
2016
, “
Towards an Intelligent Approach for CMM Inspection Planning of Prismatic Parts
,”
J. Meas.
,
92
, pp.
326
339
.
29.
Hu
,
Y.
,
Yang
,
Q.
, and
Wei
,
P.
,
2009
, “
Development of a Novel Virtual Coordinate Measuring Machine
,”
IEEE Instrumentation and Measurement Technology Conference
(
I2MTC
),
Singapore
, May 5–7, pp.
230
233
.
30.
Stouffer
,
K.
, and
Horst
,
J.
,
2001
, “
Controller Driven VRML Animation of the Next Generation Inspection System (NGIS) Real-Time Controller
,”
Proc. SPIE
, 4191, pp.
31
37
.
31.
Calonego
,
N.
,
Kirner
,
C.
,
Kirner
,
T.
, and
Abackerli
,
A. J.
,
2004
, “
Implementation of a Virtual Environment for Interacting With a Coordinate Measuring Machine
,”
IEEE International Conference on Virtual Environments, Human Computer Interface and Measurement Systems
(
VECIMS
2004),
Boston, MA
, July 12–14, pp. 125–130.
32.
Chen
,
Y. H.
,
Yang
,
Z. Y.
, and
Wang
,
Y. Z.
,
2005
, “
Haptic Modeling for a Virtual Coordinate Measuring Machine
,”
Int. J. Prod. Res.
,
43
(
9
), pp.
1861
1878
.
33.
Wang
,
Y.
,
Chen
,
Y.
,
Zhang
,
W.
,
Liu
,
D.
, and
Zhang
,
R.
,
2009
, “
Accessibility Analysis for CMM Inspection Planning by Means of Haptic Device and STL Representation
,”
IEEE International Conference Virtual Environments, Human-Computer Interfaces and Measurements Systems
(
VECIMS
2009),
Hong Kong, China
May 11–13, pp.
174
178
.
34.
Hu
,
Y.
,
Yang
,
Q.
, and
Sun
,
X.
,
2012
, “
Design, Implementation, and Testing of Advanced Virtual Coordinate-Measuring Machines
,”
IEEE Trans. Instrum. Meas.
,
61
(
5
), pp.
1368
1376
.
35.
Wang
,
Y.
,
Guo
,
X.
,
Sun
,
K.
, and
Chen
,
Y.
,
2012
, “
Study on Virtual Coordinate Measuring Machine Based on Augmented Virtuality
,”
IEEE International Conference on Virtual Environments Human-Computer Interfaces and Measurement Systems
(
VECIMS
), Tianjin, China, July 2–4, pp.
97
102
.
36.
Zhao
,
L.
, and
Peng
,
Q.
,
2010
, “Development of a CMM Training System in Virtual Environments,”
ASME
Paper No. DETC2010-28274.
37.
Martínez-Pellitero
,
S.
,
Barreiro
,
J.
,
Cuesta
,
E.
, and
Álvarez
,
B. J.
,
2011
, “
A New Process-Based Ontology for KBE System Implementation: Application to Inspection Process Planning
,”
Int. J. Adv. Manuf. Technol.
,
57
(
1–4
), pp.
325
339
.
38.
Martínez
,
S.
,
Barreiro
,
J.
,
Cuesta
,
E.
,
Álvarez
,
B. J.
, and
González
,
D.
,
2012
, “
Methodology for Identifying and Representing Knowledge in the Scope of CMM Inspection Resource Selection
,”
AIP Conf. Proc.
,
1431
, pp.
250
257
.
39.
Martínez-Pellitero
,
S.
,
Barreiro
,
J.
,
Cuesta
,
E.
, and
Fernández-Abia
,
A. I.
,
2015
, “
KBE Rules Oriented to Resources Management in Coordinates Inspection by Contact
,”
J. Manuf. Syst.
,
37
(Pt. 1), pp.
149
163
.
40.
Martínez-Pellitero
,
S.
,
Barreiro
,
J.
,
Cuesta
,
E.
, and
Fernández-Abia
,
A. I.
,
2017
, “
Knowledge Base Model for Automatic Probe Orientation and Configuration Planning With CMMs
,”
Rob. Comput.-Integr. Manuf.
,
49
, pp.
285
300
.
41.
Ritchie
,
J. M.
,
Dewar
,
R. G.
,
Robinson
,
G.
,
Simmons
,
J. E. L.
, and
Ng
,
F. M.
,
2006
, “
The Role of Non-Intrusive Operator Logging to Support the Analysis and Generation of Product Engineering Data Using Immersive VR
,”
Virtual Phys. Prototyping
,
1
(
2
), pp.
117
134
.
42.
Ritchie
,
J. M.
,
Dewar
,
R. G.
, and
Simmons
,
J. E. L.
,
1999
, “
The Generation and Practical Use of Plans for Manual Assembly Using Immersive Virtual Reality
,”
Proc. Inst. Mech. Eng., Part B
,
213
(
5
), pp.
461
474
.
43.
Sung
,
R. C. W.
,
Ritchie
,
J. M.
,
Robinson
,
G.
,
Day
,
P. N.
,
Corney
,
J. R.
, and
Lim
,
T.
,
2009
, “
Automated Design Process Modelling and Analysis Using Immersive Virtual Reality
,”
Comput. Des.
,
41
(
12
), pp.
1082
1094
.
44.
Sung
,
R.
,
Ritchie
,
J. M.
,
Rea
,
H. J.
, and
Corney
,
J.
,
2011
, “
Automated Design Knowledge Capture and Representation in Single-User CAD Environments
,”
J. Eng. Des.
,
22
(
7
), pp.
487
503
.
45.
Fletcher
,
C.
,
Ritchie
,
J.
,
Lim
,
T.
, and
Sung
,
R.
,
2013
, “
The Development of an Integrated Haptic VR Machining Environment for the Automatic Generation of Process Plans
,”
Comput. Ind.
,
64
(
8
), pp.
1045
1060
.
46.
Sivanathan
,
A.
,
Lim
,
T.
,
Ritchie
,
J.
,
Sung
,
R.
,
Kosmadoudi
,
Z.
, and
Liu
,
Y.
,
2013
, “
The Application of Ubiquitous Multimodal Synchronous Data Capture in CAD
,”
Comput. Aided Des.
,
59
, pp.
176
191
.
47.
Leu
,
M. C.
,
ElMaraghy
,
H. A.
,
Nee
,
A. Y. C.
,
Khim
,
S.
,
Lanzetta
,
M.
,
Putz
,
M.
,
Zhu
,
W.
, and
Bernard
,
A.
,
2013
, “
CAD Model Based Virtual Assembly Simulation, Planning and Training
,”
CIRP Ann. Manuf. Technol.
,
62
(
2
), pp.
799
822
.
48.
Field
,
M.
,
Pan
,
Z.
,
Stirling
,
D.
, and
Naghdy
,
F.
,
2011
, “
Human Motion Capture Sensors and Analysis in Robotics
,”
Ind. Robot
,
38
(
2
), pp.
163
171
.
49.
Moeslund
,
T. B.
,
Hilton
,
A.
, and
Kruger
,
V.
,
2006
, “
A Survey of Advances in Vision-Based Human Motion Capture and Analysis
,”
Comput. Vis. Image Understanding
,
104
(
2–3
), pp.
90
126
.
50.
Ma
,
L.
,
Zhang
,
W.
,
Fu
,
H.-Z.
,
Guo
,
Y.
,
Chablat
,
D.
, and
Bennis
,
F.
,
2010
, “
A Framework for Interactive Work Design Based on Motion Tracking, Simulation and Analysis
,”
Hum. Factors Ergon. Manuf.
,
20
(
4
), pp.
339
352
.
51.
Chang
,
S.-W.
, and
Wang
,
M.-J. J.
,
2007
, “
Digital Human Modeling and Workplace Evaluation: Using an Automobile Assembly Task as an Example
,”
Hum. Factors Ergon. Manuf.
,
17
(
5
), pp.
445
455
.
52.
Qiu
,
S.
,
Fan
,
X.
,
Wu
,
D.
,
He
,
Q.
, and
Zhou
,
D.
,
2013
, “
Virtual Human Modeling for Interactive Assembly and Disassembly Operation in Virtual Reality Environment
,”
Int. J. Adv. Manuf. Technol.
,
69
(
9–12
), pp.
2355
2372
.
53.
Zhu
,
W.
,
Vader
,
A. M.
,
Chadda
,
A.
,
Leu
,
M. C.
,
Liu
,
X. F.
, and
Vance
,
J. B.
,
2013
, “
Wii Remote-Based Low-Cost Motion Capture for Automated Assembly Simulation
,”
Virtual Reality
,
17
(
2
), pp.
125
136
.
54.
Stiefmeier
,
T.
,
Roggen
,
D.
,
Ogris
,
G.
,
Lukowicz
,
P.
, and
Tröster
,
G.
,
2008
, “
Wearable Activity Tracking in Car Manufacturing
,”
IEEE Pervasive Comput.
,
7
(
2
), pp.
42
50
.
55.
Bosche
,
F.
, and
Lim
,
T.
,
2015
, “Towards a Cyber-Physical Gaming System for Training in the Construction and Engineering Industry,”
ASME
Paper No. DETC2014-34930.
56.
Geiselhart
,
F.
,
Otto
,
M.
, and
Rukzio
,
E.
,
2016
, “
On the Use of Multi-Depth-Camera Based Motion Tracking Systems in Production Planning Environments
,”
Procedia CIRP
, 41, pp.
759
764
.
57.
Sung
,
R. C. W.
,
Ritchie
,
J. M.
,
Lim
,
T.
, and
Kosmadoudi
,
Z.
,
2012
, “
Automated Generation of Engineering Rationale, Knowledge and Intent Representations During the Product Life Cycle
,”
Virtual Reality
,
16
(
1
), pp.
69
85
.
58.
Schroeder
,
W. J.
,
Martin
,
K.
, and
Lorensen
,
B.
,
2006
,
The Visualization Toolkit
,
Kitware
, New York.
59.
Flack
,
D.
,
2001
, “
Measurement Good Practice Guide No. 41: CMM Measurement Strategies
,”
National Physical Laboratory
,
London
.
60.
Lim
,
T.
,
Ritchie
,
J. M.
,
Sung
,
R.
,
Kosmadoudi
,
Z.
,
Liu
,
Y.
, and
Thi
,
A. G.
,
2010
, “
Haptic Virtual Reality Assembly—Moving Towards Real Engineering Applications
,”
Advances in Haptics
,
InTech
,
Rijeka, Croatia
, pp.
693
723
.
61.
Ritchie
,
J. M.
,
Lim
,
T.
,
Sung
,
R.
,
Sivanathan
,
A.
,
Fletcher
,
C.
,
Liu
,
Y.
,
Kosmadoudi
,
Z.
,
Gonzalez
,
G.
, and
Medellin
,
H.
,
2014
, “
Knowledge Capture in Virtual Reality and Beyond
,”
Advances in Computers and Information in Engineering Research
,
J. G.
Michopoulos
,
C. J. J.
Paredis
,
D. W.
Rosen
, and
J. M.
Vance
, eds.,
ASME Press
,
New York
, pp.
531
555
.
62.
Renishaw, 2017, “MODUS™,” Renishaw plc., Gloucestershire, UK, accessed Oct. 4, 2017, http://www.renishaw.com/en/modus--10495
You do not currently have access to this content.