Recently, social media has emerged as an alternative, viable source to extract large-scale, heterogeneous product features in a time and cost-efficient manner. One of the challenges of utilizing social media data to inform product design decisions is the existence of implicit data such as sarcasm, which accounts for 22.75% of social media data, and can potentially create bias in the predictive models that learn from such data sources. For example, if a customer says “I just love waiting all day while this song downloads,” an automated product feature extraction model may incorrectly associate a positive sentiment of “love” to the cell phone's ability to download. While traditional text mining techniques are designed to handle well-formed text where product features are explicitly inferred from the combination of words, these tools would fail to process these social messages that include implicit product feature information. In this paper, we propose a method that enables designers to utilize implicit social media data by translating each implicit message into its equivalent explicit form, using the word concurrence network. A case study of Twitter messages that discuss smartphone features is used to validate the proposed method. The results from the experiment not only show that the proposed method improves the interpretability of implicit messages, but also sheds light on potential applications in the design domains where this work could be extended.

References

References
1.
Tuarob
,
S.
, and
Tucker
,
C. S.
,
2015
, “
Automated Discovery of Lead Users and Latent Product Features by Mining Large Scale Social Media Networks
,”
ASME J. Mech. Des.
,
137
(
7
), p.
071402
.
2.
Tuarob
,
S.
, and
Tucker
,
C. S.
,
2015
, “
Quantifying Product Favorability and Extracting Notable Product Features Using Large Scale Social Media Data
,”
ASME J. Comput. Inf. Sci. Eng.
,
15
(
3
), p.
031003
.
3.
Tuarob
,
S.
, and
Tucker
,
C. S.
,
2015
, “
A Product Feature Inference Model for Mining Implicit Customer Preferences Within Large Scale Social Media Networks
,”
ASME
Paper No. DETC2015-47225.
4.
Tuarob
,
S.
, and
Tucker
,
C. S.
,
2014
, “
Discovering Next Generation Product Innovations by Identifying Lead User Preferences Expressed Through Large Scale Social Media Data
,”
ASME
Paper No. DETC2014-34767.
5.
Tuarob
,
S.
, and
Tucker
,
C. S.
,
2013
, “
Fad or Here to Stay: Predicting Product Market Adoption and Longevity Using Large Scale, Social Media Data
,”
ASME
Paper No. DETC2013-12661.
6.
Lim
,
S.
, and
Tucker
,
C. S.
,
2016
, “
A Bayesian Sampling Method for Product Feature Extraction From Large-Scale Textual Data
,”
ASME J. Mech. Des.
,
138
(
6
), p.
061403
.
7.
Tuarob
,
S.
,
Tucker
,
C. S.
,
Salathe
,
M.
, and
Ram
,
N.
,
2014
, “
An Ensemble Heterogeneous Classification Methodology for Discovering Health-Related Knowledge in Social Media Messages
,”
J. Biomed. Inf.
,
49
, pp. 255–268.
8.
Tuarob
,
S.
,
Tucker
,
C. S.
,
Salathe
,
M.
, and
Ram
,
N.
,
2013
, “
Discovering Health-Related Knowledge in Social Media Using Ensembles of Heterogeneous Features
,”
22nd ACM International Conference on Information & Knowledge Management
(
CIKM '13
), San Francisco, CA, Oct. 27–Nov. 1, pp.
1685
1690
.
9.
Lim
,
S.
,
Tucker
,
C. S.
, and
Kumara
,
S.
,
2017
, “
An Unsupervised Machine Learning Model for Discovering Latent Infectious Diseases Using Social Media Data
,”
J. Biomed. Inf.
,
66
, pp. 82–94.
10.
Sakaki
,
T.
,
Okazaki
,
M.
, and
Matsuo
,
Y.
,
2010
, “
Earthquake Shakes Twitter Users: Real-Time Event Detection by Social Sensors
,”
19th International Conference on World Wide Web (
WWW'10
), Raleigh, NC, Apr. 26–30, pp.
851
860
.
11.
Caragea
,
C.
,
McNeese
,
N.
,
Jaiswal
,
A.
,
Traylor
,
G.
,
Kim
,
H.
,
Mitra
,
P.
,
Wu
,
D.
,
Tapia
,
A.
,
Giles
,
L.
,
Jansen
,
B.
, and
Yen, J.
,
2011
, “
Classifying Text Messages for the Haiti Earthquake
,”
Eighth International Conference on Information Systems for Crisis Response and Management
(
ISCRAM
), Lisbon, Portugal, May 8–11.
12.
Bollen
,
J.
,
Mao
,
H.
, and
Zeng
,
X.
,
2011
, “
Twitter Mood Predicts the Stock Market
,”
J. Comput. Sci.
,
2
(
1
), pp.
1
8
.
13.
Zhang
,
X.
,
Fuehres
,
H.
, and
Gloor
,
P.
,
2012
, “
Predicting Asset Value Through Twitter Buzz
,”
Advances in Collective Intelligence 2011
, Springer, Berlin, pp.
23
34
.
14.
Maynard
,
D.
, and
Greenwood
,
M. A.
,
2014
, “
Who Cares About Sarcastic Tweets? Investigating the Impact of Sarcasm on Sentiment Analysis
,” Ninth International Conference on Language Resources and Evaluation (
LREC
), Reykjavik, Iceland, May 26–31, pp. 4238–4243.
15.
Dey
,
L.
, and
Haque
,
S.
,
2009
, “
Studying the Effects of Noisy Text on Text Mining Applications
,”
Third Workshop on Analytics for Noisy Unstructured Text Data
(
AND
), Barcelona, Spain, July 23–24, pp.
107
114
.
16.
Tsur
,
O.
,
Davidov
,
D.
, and
Rappoport
,
A.
,
2010
, “
ICWSM-A Great Catchy Name: Semi-Supervised Recognition of Sarcastic Sentences in Online Product Reviews
,” Fourth International Conference on Weblogs and Social Media (
ICWSM
), Washington, DC, May 23–26, pp. 162–169.
17.
Davidov
,
D.
,
Tsur
,
O.
, and
Rappoport
,
A.
,
2010
, “
Semi-Supervised Recognition of Sarcastic Sentences in Twitter and Amazon
,”
14th Conference on Computational Natural Language Learning
(
CoNLL
), Uppsala, Sweden, July 15–16, pp.
107
116
.
18.
Navigli
,
R.
, and
Velardi
,
P.
,
2005
, “
Structural Semantic Interconnections: A Knowledge-Based Approach to Word Sense Disambiguation
,”
IEEE Trans. Pattern Anal. Mach. Intell.
,
27
(
7
), pp.
1075
1086
.
19.
Muecke
,
D. C.
,
1982
,
Irony and the Ironic
,
Methuen
, London.
20.
Gibbs
,
R. W.
,
1986
, “
On the Psycholinguistics of Sarcasm
,”
J. Exp. Psychol., Gen.
,
115
(
1
), p.
3
.
21.
Gibbs
,
R. W.
, and
Colston
,
H. L.
,
2007
,
Irony in Language and Thought: A Cognitive Science Reader
, Lawrence Erlbaum, New York.
22.
Archak
,
N.
,
Ghose
,
A.
, and
Ipeirotis
,
P. G.
,
2011
, “
Deriving the Pricing Power of Product Features by Mining Consumer Reviews
,”
Manage. Sci.
,
57
(
8
), pp.
1485
1509
.
23.
Asur
,
S.
, and
Huberman
,
B. A.
,
2010
, “
Predicting the Future With Social Media
,”
IEEE/WIC/ACM International Conference on Web Intelligence and Intelligent Agent Technology
(
WI-IAT
), Washington, DC, Aug. 31–Sept. 3, pp.
492
499
.
24.
Stone
,
T.
, and
Choi
,
S.-K.
,
2014
, “
Visualization Tool for Interpreting User Needs From User-Generated Content Via Text Mining and Classification
,”
ASME
Paper No. DETC2014-34424.
25.
Zhao
,
W. X.
,
Jiang
,
J.
,
Weng
,
J.
,
He
,
J.
,
Lim
,
E.-P.
,
Yan
,
H.
, and
Li
,
X.
,
2011
, “
Comparing Twitter and Traditional Media Using Topic Models
,”
Advances in Information Retrieval
,
Springer
, Berlin, pp.
338
349
.
26.
Yajuan
,
D.
,
Zhimin
,
C.
,
Furu
,
W.
,
Ming
,
Z.
, and
Shum
,
H. Y.
,
2012
, “
Twitter Topic Summarization by Ranking Tweets Using Social Influence and Content Quality
,”
24th International Conference on Computational Linguistics
, Mumbai, India, Dec. 8–15, pp.
763
780
.
27.
Wang
,
Y.
,
Wu
,
H.
, and
Fang
,
H.
,
2014
, “
An Exploration of Tie-Breaking for Microblog Retrieval
,”
Advances in Information Retrieval
,
Springer
, Cham, Switzerland, pp.
713
719
.
28.
Tuarob
,
S.
,
Tucker
,
C. S.
,
Salathe
,
M.
, and
Ram
,
N.
,
2015
, “
Modeling Individual-Level Infection Dynamics Using Social Network Information
,”
24th ACM International on Conference on Information and Knowledge Management,
Melbourne, Australia, Oct. 19–23, pp.
1501
1510
.
29.
Tuarob
,
S.
, and
Mitrpanont
,
J. L.
,
2017
, “
Automatic Discovery of Abusive Thai Language Usages in Social Networks
,”
International Conference on Asian Digital Libraries
, Bangkok, Thailand, Nov. 13–15, pp.
267
278
.
30.
Thelwall
,
M.
,
Buckley
,
K.
, and
Paltoglou
,
G.
,
2011
, “
Sentiment in Twitter Events
,”
J. Am. Soc. Inf. Sci. Technol.
,
62
(
2
), pp.
406
418
.
31.
Kucuktunc
,
O.
,
Cambazoglu
,
B. B.
,
Weber
,
I.
, and
Ferhatosmanoglu
,
H.
,
2012
, “
A Large-Scale Sentiment Analysis for Yahoo! Answers
,”
Fifth ACM International Conference on Web Search and Data Mining
(
WSDM '12
), Seattle, WA, Feb. 8–12, pp.
633
642
.
32.
Weber
,
I.
,
Ukkonen
,
A.
, and
Gionis
,
A.
,
2012
, “
Answers, Not Links: Extracting Tips From Yahoo! Answers to Address How-to Web Queries
,”
Fifth ACM International Conference on Web Search and Data Mining
(
WSDM '12
), Seattle, WA, Feb. 8–12, pp.
613
622
.
33.
Blei
,
D. M.
,
Ng
,
A. Y.
, and
Jordan
,
M. I.
,
2003
, “
Latent Dirichlet Allocation
,”
J. Mach. Learn. Res.
,
3
, pp.
993
1022
.
34.
Paul
,
M. J.
, and
Dredze
,
M.
,
2011
, “
A Model for Mining Public Health Topics From Twitter
,”
Tech. Rep.
,
11
, p. 16.
35.
Paul
,
M. J.
, and
Dredze
,
M.
,
2011
, “
You are What You Tweet: Analyzing Twitter for Public Health
,” Fifth International AAAI Conference on Weblogs and Social Media (
ICWSM
), Barcelona, Spain, July 17–21, pp.
265
272
.
36.
Ramage
,
D.
,
Dumais
,
S. T.
, and
Liebling
,
D. J.
,
2010
, “
Characterizing Microblogs With Topic Models
,” Fourth International AAAI Conference on Weblogs and Social Media (
ICWSM
), Washington, DC, May 23–26.
37.
Prier
,
K. W.
,
Smith
,
M. S.
,
Giraud-Carrier
,
C.
, and
Hanson
,
C. L.
,
2011
, “
Identifying Health-Related Topics on Twitter
,”
Social Computing, Behavioral-Cultural Modeling and Prediction
,
Springer
, Berlin, pp.
18
25
.
38.
Jin
,
O.
,
Liu
,
N. N.
,
Zhao
,
K.
,
Yu
,
Y.
, and
Yang
,
Q.
,
2011
, “
Transferring Topical Knowledge From Auxiliary Long Texts for Short Text Clustering
,”
20th ACM International Conference on Information and Knowledge Management
(
CIKM
), Glasgow, Scotland, Oct. 24–28, pp.
775
784
.
39.
Tuarob
,
S.
, and
Tucker
,
C. S.
,
2016
, “
Automated Discovery of Product Preferences in Ubiquitous Social Media Data: A Case Study of Automobile Market
,”
Computer Science and Engineering Conference
(
ICSEC
), Chiang Mai, Thailand, Dec. 14–17, pp.
1
6
.
40.
González-Ibáñez
,
R.
,
Muresan
,
S.
, and
Wacholder
,
N.
,
2011
, “
Identifying Sarcasm in Twitter: A Closer Look
,”
49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies (HLT)
, Portland, OR, June 19–24, pp.
581
586
.
41.
Reyes
,
A.
,
Rosso
,
P.
, and
Veale
,
T.
,
2013
, “
A Multidimensional Approach for Detecting Irony in Twitter
,”
Lang. Resour. Eval.
,
47
(
1
), pp.
239
268
.
42.
Ahlqvist
,
T.
,
2008
,
Social Media Roadmaps: Exploring the Futures Triggered by Social Media
,
VTT
, Helsinki, Finland.
43.
Thelwall
,
M.
,
Buckley
,
K.
,
Paltoglou
,
G.
,
Cai
,
D.
, and
Kappas
,
A.
,
2010
, “
Sentiment in Short Strength Detection Informal Text
,”
J. Am. Soc. Inf. Sci. Technol.
,
61
(
12
), pp.
2544
2558
.
44.
Guo
,
W.
,
Li
,
H.
,
Ji
,
H.
, and
Diab
,
M. T.
,
2013
, “
Linking Tweets to News: A Framework to Enrich Short Text Data in Social Media
,”
51st Annual Meeting of the Association for Computational Linguistics
, Sofia, Bulgaria, Aug. 4–9, pp.
239
249
.
45.
Ramaswamy
,
S.
, 2018, “
Comparing the Efficiency of Two Clustering Techniques: A Case-Study Using Tweets
,”
Masters of Science Program
, University of Maryland, College Park, MD.
46.
Fox
,
E.
,
2008
,
Emotion Science: Cognitive and Neuroscientific Approaches to Understanding Human Emotions
,
Palgrave Macmillan
, Basingstoke, UK.
47.
Cutting
,
D.
,
Kupiec
,
J.
,
Pedersen
,
J.
, and
Sibun
,
P.
,
1992
, “
A Practical Part-of-Speech Tagger
,”
Third Conference on Applied Natural Language Processing
(
ANLC '92
), Trento, Italy, Mar. 31–Apr. 3, pp.
133
140
.
48.
Özgür
,
A.
,
Cetin
,
B.
, and
Bingol
,
H.
,
2008
, “
Co-Occurrence Network of Reuters News
,”
Int. J. Mod. Phys. C
,
19
(
5
), pp.
689
702
.
49.
Jia
,
S.
,
Yang
,
C.
,
Liu
,
J.
, and
Zhang
,
Z.
,
2012
, “
An Improved Information Filtering Technology
,”
Future Computing, Communication, Control and Management
,
Springer
, Berlin, pp.
507
512
.
50.
Tuarob
,
S.
,
Mitra
,
P.
, and
Giles
,
C. L.
,
2012
, “
Improving Algorithm Search Using the Algorithm Co-Citation Network
,”
12th ACM/IEEE-CS Joint Conference on Digital Libraries
(
JCDL '12
), Washington, DC, June 10–14, pp.
277
280
.
51.
Tuarob
,
S.
,
Bhatia
,
S.
,
Mitra
,
P.
, and
Giles
,
C.
,
2013
, “
Automatic Detection of Pseudocodes in Scholarly Documents Using Machine Learning
,”
12th International Conference on Document Analysis and Recognition
(
ICDAR
), Washington, DC, Aug. 25–28, pp.
738
742
.
52.
Evans
,
D. A.
,
Handerson
,
S. K.
,
Monarch
,
I. A.
,
Pereiro
,
J.
,
Delon
,
L.
, and
Hersh
,
W. R.
,
1998
,
Mapping Vocabularies Using Latent Semantics
,
Springer
, Boston, MA.
53.
Tuarob
,
S.
,
Pouchard
,
L. C.
, and
Giles
,
C. L.
,
2013
, “
Automatic Tag Recommendation for Metadata Annotation Using Probabilistic Topic Modeling
,”
13th ACM/IEEE-CS Joint Conference on Digital Libraries
, (
JCDL'13
), Indianapolis, IN, July 22–26, pp.
239
248
.
54.
Tuarob
,
S.
,
Pouchard
,
L.
,
Mitra
,
P.
, and
Giles
,
C.
,
2015
, “
A Generalized Topic Modeling Approach for Automatic Document Annotation
,”
Int. J. Digital Libr.
,
16
(2), pp. 111–128.
55.
Cliche
,
M.
,
2014
, “
The Sarcasm Detector: Learning Sarcasm From Tweets!
,” The Sarcasm Detector, accessed Feb. 19, 2017, http://www.thesarcasmdetector.com
56.
Liu
,
F.
,
Liu
,
F.
, and
Liu
,
Y.
,
2008
, “
Automatic Keyword Extraction for the Meeting Corpus Using Supervised Approach and Bigram Expansion
,”
Spoken Language Technology Workshop
(
SLT
2008), Goa, India, Dec. 15–19, pp.
181
184
.
57.
Martin
,
S.
,
Brown
,
W. M.
,
Klavans
,
R.
, and
Boyack
,
K. W.
,
2011
, “
OpenOrd: An Open-Source Toolbox for Large Graph Layout
,”
SPIE Proc.
,
7868
, p.
786806
.
58.
Manning
,
C. D.
,
Raghavan
,
P.
, and
Schütze
,
H.
,
2008
,
Introduction to Information Retrieval
,
Cambridge University Press
,
New York
.
59.
Thelwall
,
M.
,
2017
, “
The Heart and Soul of the Web? Sentiment Strength Detection in the Social Web With SentiStrength
,”
Cyberemotions
, Springer, Cham, Switzerland, pp. 119–134.
60.
Tuarob
,
S.
,
Tucker
,
C. S.
,
Kumara
,
S.
,
Giles
,
C. L.
,
Pincus
,
A. L.
,
Conroy
,
D. E.
, and
Ram
,
N.
,
2017
, “
How are You Feeling?: A Personalized Methodology for Predicting Mental States From Temporally Observable Physical and Behavioral Information
,”
J. Biomed. Inf.
,
68
, pp.
1
19
.
61.
Tuarob
,
S.
,
Pouchard
,
L. C.
,
Noy
,
N.
,
Horsburgh
,
J. S.
, and
Palanisamy
,
G.
,
2012
, “
Onemercury: Towards Automatic Annotation of Environmental Science Metadata
,”
Second International Workshop on Linked Science
, Boston, MA, Nov. 12.
You do not currently have access to this content.