The paper discusses thin part inspection using three-dimensional (3D) non rigid registration. The main objective is to match measurement point data to its nominal representation, so as to identify form defects. Since form defects have the same size order as the thickness of the part, establishing such matching is a challenging task. The originality of the method developed in this paper is using a deformable iterative closet point algorithm (ICP), and integrating modal approach to express form defects. The method described improves the matching through iteration of the ICP and establishes a definition of the error. The results of the application show that the present method is efficient.

References

References
1.
Besl
,
P. J.
, and
McKay
,
N. D.
,
1992
, “
Method for Registration of 3-D Shapes
,”
Int. Soc. Opt. Photonics
,
14
(
2
), pp.
586
606
.
2.
Formosa
,
F.
, and
Samper
,
S.
,
2007
, “
Modal Expression of Form Defects
,”
Models Comput. Aided Tolerancing Des. Manuf.
,
1
(
5
), pp.
12
22
.
3.
Samper
,
S.
, and
Formosa
,
F.
,
2007
, “
Form Defects Tolerancing by Natural Modes Analysis
,”
ASME J. Comput. Inf. Sci. Eng.
,
7
(
1
), pp.
44
51
.
4.
Rusinkiewicz
,
S.
, and
Levoy
,
M.
,
2001
, “
Efficient Variants of the ICP Algorithm
,”
IEEE
Third International Conference on 3D Digital Imaging and Modeling,
Quebec City, QC, Canada, May 28–June 1, pp.
145
152
.
5.
Huang
,
Q.-H.
,
Adams
,
B.
,
Wicke
,
M.
, and
Guibas
,
J.
,
2008
, “
Non-Rigid Registration Under Isometric Deformations
,”
Eurographics Symposium on Geometry Processing
, Copenhagen, Denmark, July 2–4.
6.
Brown
,
B. J.
, and
Rusinkiewicz
,
S.
,
2007
, “
Global Non-Rigid Alignment of 3D Scans
,”
ACM Trans. Graph. (TOG)
,
26
(
3
), pp.
21
30
.
7.
Cao
,
V. T.
,
Nguyen
,
V. T.
,
Tran
,
T. T.
,
Ali
,
S.
, and
Laurendeau
,
D.
,
2014
, “
Non-Rigid Registration for Deformable Objects
,” International Conference on Computer Graphics Theory and Applications (GRAPP), Lisbon, Portugal, Jan. 5–8.
8.
Kaick
,
O. V.
,
Zhang
,
H.
,
Hamarneh
,
G.
, and
Cohen
,
D.
,
2007
, “
A Survey on Shape Correspondence
,”
Comput. Graph. Forum
,
16
(
30
), pp.
1681
1707
.
9.
Allen
,
B.
,
Curless
,
B.
, and
Popović
,
Z.
,
2003
, “
The Space of Human Body Shapes: Reconstruction and Parameterization From Range Scans
,”
ACM Trans. Graphics (TOG)
,
22
(
13
), pp.
587
594
.
10.
Zhang
,
Z.
,
1993
, “
Recalage De Deux Nuages De Points 3D
,”
Traitement Du Signal
,
10
(
4
), pp.
263
281
.
11.
Anguelov
,
D.
,
Srinivasan
,
P.
,
Pang
,
H. C.
,
Koller
,
D.
,
Thrun
,
S.
, and
Davis
,
J.
,
2005
, “
The Correlated Correspondence Algorithm for Unsupervised Registration of Nonrigid Surfaces
,” 17th International Conference on Neural Information Processing Systems, Vancouver, BC, Canada, pp.
33
40
.
12.
Guo
,
H.
,
Zhu
,
D.
, and
Mordohai
,
2016
, “
Correspondence Estimation for Non-Rigid Point Clouds With Automatic Part Discovery
,”
Visual Comput.
,
32
(
12
), pp.
1511
1524
.
13.
Amberg
,
B.
,
Rodhami
,
S.
, and
Vetter
,
T.
,
2007
, “
Optimal Step Nonrigid ICP Algorithms for Surface Registration
,” IEEE Conference on Computer Vision and Pattern Recognition (
CVPR'07
), Minneapolis, MN, June 17–22.
14.
Li
,
H.
,
Sumner
,
R. W.
, and
Pauly
,
M.
,
2008
, “
Global Correspondence Optimization for Non Rigid Registration of Depth Scans
,”
Comput. Graphics Forum
,
27
(
5
), pp.
1421
1430
.
15.
Ravishankar
,
S.
,
Dutt
,
H. N. V.
, and
Gurumoorthy
,
B.
,
2010
, “
Automated Inspection of Aircraft Parts Using a Modified ICP Algorithm
,”
Int. J. Adv. Manuf. Technol.
,
46
(
1–4
), pp.
227
236
.
16.
Zhu
,
L.
,
Barhak
,
J.
,
Srivatsan
,
V.
, and
Katz
,
R.
,
2007
, “
Efficient Registration for Precision Inspection of Free-Form Surfaces
,”
Int. J. Adv. Manuf. Technol.
,
32
(
5–6
), pp.
505
515
.
17.
Petitcuenot
,
M.
, and
Anselmetti
,
B.
,
2016
, “
Part Tolerancing Through Multiscale Defect Analysis
,”
Int. J. Aeronaut. Space Sci.
,
17
(
1
), pp.
112
121
.
18.
Huang
,
W.
, and
Ceglarek
,
D.
,
2002
, “
Mode-Based Decomposition of Part Form Error by Discrete-Cosine-Transform With Implementation to Assembly and Stamping System With Compliant Parts
,”
Ann. CIRP
,
51
(
1
), pp.
21
26
.
19.
Thiébaut
,
F.
,
Lacroix
,
C.
,
Andolfatto
,
L.
, and
Lartigue
,
C.
,
2017
, “
Evaluation of the Shape Deviation of Non Rigid Parts From Optical Measurements
,”
Int. J. Adv. Manuf. Technol.
,
88
(
5–8
), pp.
1937
1944
.
20.
Lartigue
,
C.
,
Contri
,
A.
, and
Bourdet
,
P.
,
2002
, “
Digitised Point Quality in Relation With Point Exploitation
,”
Measurement
,
32
(
3
), pp.
193
203
.
You do not currently have access to this content.