In this paper, we present a pattern development method for soft product design. We utilize a surface fattening method based on a mass-spring model to create 2D patterns unfolding from a three-dimensional (3D) model. Multilevel meshes are proposed to expedite the flattening process, and a boundary optimization method is employed to guarantee 2D patterns can be sewn well. We apply the proposed method to the design of real soft products. Experimental results show that it can deal with complex surfaces efficiently and robustly, and manufactured products are satisfactory.

References

References
1.
Liu
,
Q. S.
,
Xi
,
J. T.
, and
Wu
,
Z. Q.
,
2013
, “
An Energy-Based Surface Flattening Method for Flat Pattern Development of Sheet Metal Components
,”
Int. J. Adv. Manuf. Technol.
,
68
(
5–8
), pp.
1155
1166
.
2.
Liu
,
X. H.
,
Li
,
S. P.
,
Zheng
,
X. H.
, and
Lin
,
M. X.
,
2016
, “
Development of a Flattening System for Sheet Metal With Free-Form Surface
,”
Adv. Mech. Eng.
,
8
(
2
), pp.
1
12
.
3.
McCartney
,
J.
,
Hinds
,
B. K.
, and
Seow
,
B. L.
,
1999
, “
The Flattening of Triangulated Surfaces Incorporating Darts and Gussets
,”
Comput.-Aided Des.
,
31
(
4
), pp.
249
260
.
4.
Wang
,
C. L.
,
Smith
,
S.
, and
Yuen
,
M. F.
,
2002
, “
Surface Flattening Based on Energy Model
,”
Comput.-Aided Des.
,
34
(
11
), pp.
823
833
.
5.
Zhong
,
Y.
, and
Xu
,
B.
,
2006
, “
A Physically Based Method for Triangulated Surface Flattening
,”
Comput.-Aided Des.
,
38
(
10
), pp.
1062
1073
.
6.
Aono
,
M.
,
Breen
,
D.
, and
Wozny
,
M.
,
2001
, “
Modeling Methods for the Design of 3D Broadcloth Composite Parts
,”
Comput.-Aided Des.
,
33
(
13
), pp.
989
1007
.
7.
Ben-Chen
,
M.
,
Gotsman
,
C.
, and
Guy
,
G.
,
2010
, “
Conformal Flattening by Curvature Prescription and Metric Scaling
,”
Comput. Graph. Forum
,
27
(
2
), pp.
449
458
.
8.
Wang
,
C. L.
,
2008
, “
WireWarping: A Fast Surface Flattening Approach With Length-Preserved Feature Curves
,”
Comput.-Aided Des.
,
40
(
3
), pp.
381
395
.
9.
Wang
,
C. L.
,
2008
, “
Flattenable Mesh Surface Fitting on Boundary Curves
,”
ASME J. Comput. Inf. Sci. Eng.
,
8
(
2
), p.
021006
.
10.
Degener
,
P.
,
Meseth
,
J.
, and
Klein
,
R.
,
2003
, “
An Adaptable Surface Parameterization Method
,”
International Meshing Roundtable
, Santa Fe, NM, Sept. 14–17, pp.
201
213
.https://pdfs.semanticscholar.org/582e/1f97958054e137e9488ffd10040de5e4da6a.pdf
11.
Desbrun
,
M.
,
Meyer
,
M.
, and
Alliez
,
P.
,
2002
, “
Intrinsic Parameterization of Surface Meshes
,”
Proc. Eurographics
,
21
(
3
), pp.
209
218
.
12.
Floater
,
M. S.
, and
Hormann
,
K.
, 2005, “
Surface Parameterization: A Tutorial and Survey
,”
Advances in Multiresolution for Geometric Modelling
, Springer, Berlin, pp. 157–186.
13.
Floater
,
M. S.
,
1997
, “
Parameterization and Smooth Approximation of Surface Triangulations
,”
Comput. Aided Geom. Des.
,
14
(
3
), pp.
231
250
.
14.
Lévy
,
B.
,
Petitjean
,
S.
,
Ray
,
N.
, and
Maillot
,
J.
,
2002
, “
Least Squares Conformal Maps for Automatic Texture Atlas Generation
,”
ACM Trans. Graph.
,
21
(
3
), pp.
362
371
.
15.
Ray
,
N.
, and
Lévy
,
B.
,
2003
, “
Hierarchical Least Squares Conformal Map
,”
11th Pacific Conference on Computer Graphics and Applications
, Canmore, AB, Canada, Oct. 8–10, pp.
263
270
.
16.
Sheffer
,
A.
,
Lévy
,
B.
,
Mogilnitsky
,
M.
, and
Bogomyakov
,
A.
,
2005
, “
ABF++: Fast and Robust Angle Based Flattening
,”
ACM Trans. Graph.
,
24
(
2
), pp.
311
330
.
17.
Li
,
B.
,
Zhang
,
X.
,
Zhou
,
P.
, and
Hu
,
P.
,
2010
, “
Mesh Parameterization Based on One-Step Inverse Forming
,”
Comput.-Aided Des.
,
42
(
7
), pp.
633
640
.
18.
Skouras
,
M.
,
Thomaszewski
,
B.
,
Kaufmann
,
P.
,
Garg
,
A.
,
Bickel
,
B.
,
Grinspun
,
E.
, and
Gross
,
M.
,
2014
, “
Designing Inflatable Structures
,”
ACM Trans. Graph.
,
33
(
4
), pp.
1
10
.
19.
Zhang
,
Y. B.
, and
Wang
,
C.
,
2011
, “
WireWarping++: Robust and Flexible Surface Flattening With Length Control
,”
Autom. Sci. Eng.
,
8
(
1
), pp. 205–215.
20.
Muller
,
M.
,
2008
, “
Hierarchical Position Based Dynamics
,”
Workshop on Virtual Reality Interactions and Physical Simulation
, Grenoble, France, Nov. 13–14, pp. 1–10.http://matthias-mueller-fischer.ch/publications/hpbd.pdf
21.
Zhang
,
D. L.
, and
Yuen
,
M. F.
,
2001
, “
Cloth Simulation Using Multilevel Meshes
,”
Comput. Graph.
,
25
(
3
), pp.
383
389
.
22.
Sander
,
P.
,
Gortler
,
S.
,
Snyder
,
J.
, and
Hoppe
,
H.
,
2002
, “
Signal-Specialized Parametrization
,”
13th Eurographics Workshop on Rendering
, Pisa, Italy, June 26–28, pp.
87
100
.
23.
Sheffer
,
A.
, and
Sturler
,
E.
,
2001
, “
Surface Parameterization for Meshing by Triangulation Flattening
,”
Eng. Comput.
,
17
(
3
), pp.
326
337
.
24.
Li
,
J. T.
,
Zhang
,
D. L.
, and
Lu
,
G. D.
,
2005
, “
Flattening Triangulated Surfaces Using a Mass-Spring Model
,”
Int. J. Adv. Manuf. Technol.
,
25
(
1–2
), pp.
10
117
.
25.
Liu
,
Y. J.
,
Lai
,
Y. K.
, and
Hu
,
S. M.
,
2009
, “
Stripification of Free-Form Surfaces With Global Error Bounds for Developable Approximation
,”
IEEE Trans. Autom. Sci. Eng.
,
6
(
4
), pp.
700
709
.
You do not currently have access to this content.