In this paper, the use of methods from the meta- or surrogate modeling literature, for building models predicting the draping of physical surfaces, is examined. An example application concerning modeling of the behavior of a variable shape mold is treated. Four different methods are considered for this problem. The proposed methods are difference methods assembled from the methods kriging and proper orthogonal decomposition (POD) together with a spline-based underlying model (UM) and a novel patchwise modeling scheme. The four models, namely kriging and POD with kriging of the coefficients in global and local variants, are compared in terms of accuracy and numerical efficiency on data sets of different sizes for the treated application. It is shown that the POD-based methods are vastly superior to models based on kriging alone, and that the use of a difference model structure is advantageous. It is demonstrated that patchwise modeling schemes, where the complete surface behavior is modeled by a collection of locally defined smaller models, can provide a good compromise between achieving good model accuracy and scalability of the models to large systems.

References

References
1.
Eckers
,
V.
,
Janetzko
,
S.
, and
Gries
,
T.
,
2012
, “
Drape Study on Textiles for Concrete Applications
,”
Autex Res. J.
,
12
(
2
), pp.
50
54
.http://www.autexrj.com/cms/zalaczone_pliki/0010_12.pdf
2.
Munro
,
C.
, and
Walczyk
,
D. F.
,
2007
, “
Reconfigurable Pin-Type Tooling: A Survey of Prior Art and Reduction to Practice
,”
ASME J. Manuf. Sci. Eng.
,
129
(
3
), pp.
551
565
.
3.
Montgomery
,
D. C.
,
2012
,
Design and Analysis of Experiments
,
Wiley
,
Hoboken, NJ
.
4.
MacKay
,
D. J. C.
,
2004
,
Information Theory, Inference, and Learning Algorithms
,
Cambridge University Press
,
Cambridge, UK
.
5.
Forrester
,
A. I. J.
, and
Keane
,
A. J.
,
2009
, “
Recent Advances in Surrogate-Based Optimization
,”
Prog. Aerosp. Sci.
,
45
(
1–3
), pp.
50
79
.
6.
Smola
,
A.
, and
Schölkopf
,
B.
,
2004
, “
A Tutorial on Support Vector Regression
,”
Stat. Comput.
,
14
(
3
), pp.
199
222
.
7.
Forrester
,
A. I. J.
,
Sóbester
,
A.
, and
Keane
,
A. J.
,
2008
,
Engineering Design Via Surrogate Modelling: A Practical Guide
,
Wiley
,
Hoboken, NJ
.
8.
Kalogirou
,
S. A.
,
2001
, “
Artificial Neural Networks in Renewable Energy Systems Applications: A Review
,”
Renewable Sustainable Energy Rev.
,
5
(
4
), pp.
373
401
.
9.
Carr
,
J. C.
,
Fright
,
W. R.
, and
Beatson
,
R. K.
,
1997
, “
Surface Interpolation With Radial Basis Functions for Medical Imaging
,”
IEEE Trans. Med. Imaging
,
16
(
1
), pp.
96
107
.
10.
Klass
,
V.
,
Behm
,
M.
, and
Lindbergh
,
G.
,
2015
, “
Capturing Lithium-Ion Battery Dynamics With Support Vector Machine-Based Battery Model
,”
J. Power Sources
,
298
, pp.
92
101
.
11.
Shi
,
X.
,
Palos Teixeira
,
Â.
,
Zhang
,
J.
, and
Guedes Soares
,
C.
,
2014
, “
Kriging Response Surface Reliability Analysis of a Ship-Stiffened Plate With Initial Imperfections
,”
Struct. Infrastruct. Eng.
,
11
(
11
), pp.
1450
1465
.
12.
Hamdaoui
,
M.
,
Oujebbour
,
F.-Z.
,
Habbal
,
A.
,
Breitkopf
,
P.
, and
Villon
,
P.
,
2014
, “
Kriging Surrogates for Evolutionary Multi-Objective Optimization of CPU Intensive Sheet Metal Forming Applications
,”
Int. J. Mater. Form.
,
8
(
3
), pp.
469
480
.
13.
Rayas-Sanchez
,
J. E.
,
2004
, “
EM-Based Optimization of Microwave Circuits Using Artificial Neural Networks: The State-of-the-Art. Microw
,”
Theory Tech. IEEE Trans.
,
52
(
1
), pp.
420
435
.
14.
Shlens
,
J.
,
2014
, “A Tutorial on Principal Component Analysis,” e-print
arXiv: 1404.1100
.https://arxiv.org/abs/1404.1100
15.
Xiao
,
M.
,
Breitkopf
,
P.
,
Filomeno Coelho
,
R.
,
Knopf-Lenoir
,
C.
,
Sidorkiewicz
,
M.
, and
Villon
,
P.
,
2010
, “
Model Reduction by CPOD and Kriging
,”
Struct. Multidiscip. Optim.
,
41
(
4
), pp.
555
574
.
16.
Bandler
,
J. W.
,
Biernacki
,
R.
,
Chen
,
S. H.
,
Grobelny
,
P. A.
, and
Hemmers
,
R. H.
,
1994
, “
Space Mapping Technique for Electromagnetic Optimization
,”
IEEE Trans. Microwave Theory Tech.
,
42
(
12
), pp.
2536
2544
.
17.
Friedman
,
J. H.
,
1991
, “
Multivariate Adaptive Regression Splines
,”
Ann. Stat.
,
19
(
1
), pp.
1
67
.
18.
Mullur
,
A. A.
, and
Messac
,
A.
,
2005
, “
Extended Radial Basis Functions: More Flexible and Effective Metamodeling
,”
AIAA J.
,
43
(
6
), pp.
1306
1315
.
19.
Rasmussen
,
C. E.
,
2006
,
Gaussian Processes for Machine Learning
,
MIT Press
,
Cambridge, MA
.
20.
Krige
,
D. G.
,
1951
, “
A Statistical Approach to Some Basic Mine Valuation Problems on the Witwatersrand
,”
J. Chem. Metall. Min. Soc. South Africa
,
52
(
6
), pp.
119
139
.http://journals.co.za/content/saimm/52/9/AJA0038223X_4858
21.
Sacks
,
J.
,
Welch
,
W. J.
,
Mitchell
,
T. J.
, and
Wynn
,
H. P.
,
1989
, “
Design and Analysis of Computer Experiments
,”
Stat. Sci.
,
4
(
4
), pp.
409
423
.
22.
Forrester
,
A. I. J.
,
Sóbester
,
A.
, and
Keane
,
A. J.
,
2015
, “Optimization Codes,” Optimization Codes, accessed Feb. 28, 2018, https://optimizationcodes.wordpress.com
23.
Joseph
,
V. R.
, and
Ying
,
H.
,
2008
, “
Orthogonal-Maximin Latin Hypercube Designs
,”
Stat. Sin.
,
18
(
1
), pp.
171
186
.http://www3.stat.sinica.edu.tw/statistica/oldpdf/A18n17.pdf
24.
Fuentes
,
M.
,
2001
, “
A High Frequency Kriging Approach for Non-Stationary Environmental Processes
,”
Environmetrics
,
12
(
5
), pp.
469
483
.
25.
Xiong
,
Y.
,
Chen
,
W.
,
Apley
,
D.
, and
Ding
,
X.
,
2007
, “
A Non-Stationary Covariance-Based Kriging Method for Metamodelling in Engineering Design
,”
Int. J. Numer. Methods Eng.
,
71
(
6
), pp.
733
756
.
You do not currently have access to this content.