A datum selection strategy based on statistical learning is proposed. The datum selection is an important part of tolerance specification which is the base of geometric tolerance selection and tolerance principle selection. The problem of datum selection is to deduce the datum reference frame (DRF) based on geometrical, contact, and positioning characteristics. Currently, heuristic rules are used for DRF selection, leading to suboptimal choice of DRF in many cases. The proposed strategy formulates normalized vectors computed from the geometric, contact, and positioning characteristics of surfaces. The surfaces of different parts can be compared by their normalized vectors. Then the statistical learning method is used for building a classifier which can discriminate datum feature vectors based on training samples. Finally, a case study is given to verify the strategy and the different algorithms are compared and discussed.

References

References
1.
Hong
,
Y. S.
, and
Chang
,
T. C.
,
2002
, “
A Comprehensive Review of Tolerancing Research
,”
Int. J. Prod. Res.
,
40
(
11
), pp.
2425
2459
.
2.
Colosimo
,
B. M.
, and
Senin
,
N.
,
2011
,
Geometric Tolerances
,
Springer
,
London
, pp.
4
5
.
3.
ISO,
2001
, “Geometrical Product Specification (GPS)—Fundamental Rules, Principles and Definitions,” International Organization for Standardization, Geneva, Switzerland, Standard No. ISO/DS 14660.
4.
Xiangqian
,
J.
,
2007
,
Theory and Applications of New Generation Geometrical Product Specifications
,
Higher Education Press
,
Beijing, China
.
5.
Cao
,
Y.
,
Liu
,
Y.
,
Mao
,
J.
, and
Yang
,
J.
,
2006
, “
3DTS: A 3D Tolerancing System Based on Mathematical Definition
,”
J. Zhejiang Univ. Sci. A.
,
7
(
11
), pp.
1810
1818
.
6.
Cao
,
Y.
,
Yang
.,
J.
,
Wu
,
Z.
, and
Wu
,
L.
,
2004
, “
A Robust Tolerance Design Method Based on Process Capability
,”
J. Zhejiang Univ. Sci. A.
,
5
(
1
), pp.
81
85
.https://link.springer.com/article/10.1007%2FBF02839317
7.
Craig
,
M.
,
S.
, and
Srinivasan
,
V.
,
2013
, “Theory and Algorithms for L1 Fitting Used for Planar Datum Establishment in Support of Tolerancing Standards,”
ASME
Paper No. DETC2013-12372.
8.
Srinivasan
,
V.
,
Shakarji
,
C. M.
, and
Morse
,
E. P.
,
2012
, “
On the Enduring Appeal of Least-Squares Fitting in Computational Coordinate Metrology
,”
ASME J. Comput. Inf. Sci. Eng.
,
12
(
1
), p.
011008
.
9.
Shakarj
,
C. M.
, and
Srinivasan
,
V.
,
2012
, “Fitting Weighted Total Least-Squares Planes and Parallel Planes to Support Tolerancing Standards,”
ASME
Paper No. DETC2012-70398.
10.
Shakarj
,
C. M.
, and
Srinivasan
,
V.
,
2015
, “
Datum Planes Based on a Constrained L1 Norm
,”
ASME J. Comput. Inf. Sci. Eng.
,
15
(4), p. 041008.
11.
Shakarj
,
C. M.
, and
Srinivasan
,
V.
,
2015
, “A Constrained L2 Based Algorithm for Standardized Planar Datum Establishment,”
ASME
Paper No. IMECE2015-51199.
12.
Shakarj
,
C. M.
, and
Srinivasan
,
V.
,
2016
, “
Theory and Algorithm for Planar Datum Establishment Using Constrained Total Least-Squares
,”
Proc. CIRP
,
43
, pp.
232
237
.
13.
Shakarj
,
C. M.
, and
Srinivasan
,
V.
,
2016
, “Computational Investigations for a New, Constrained Least-Squares Datum Definition for Circles, Cylinders, and Spheres,”
ASME
Paper No. IMECE2016-67753.
14.
Pandya
,
G.
,
Lehtihet
,
E. A.
, and
Cavalier, T. M.
,
2002
, “
Tolerance Design of Datum Systems
,”
J. Int. J. Prod. Res.
,
40
(
4
), pp.
783
807
.
15.
Bai
,
G.
,
Zhang
,
C.
, and
Wang
,
B.
,
2000
, “
Optimization of Machining Datum Selection and Machining Tolerance Allocation With Genetic Algorithms
,”
Int. J. Prod. Res.
,
38
(
6
), pp.
1407
1424
.
16.
Armillotta
,
A.
,
2013
, “
A Method for Computer-Aided Specification of Geometric Tolerances
,”
Comput.-Aided Des.
,
45
(
12
), pp.
1604
1616
.
17.
Yi
,
Z.
,
Zongbin
,
L.
,
Gao
,
J.
, and
Hong
,
J.
,
2011
, “
New Reasoning Algorithm for Assembly Tolerance Specifications and Corresponding Tolerance Zone Types
,”
Comput.-Aided Des.
,
43
(12), pp.
1606
1628
.
18.
Clemént
,
A.
,
Rivière
,
A.
,
Serré
,
P.
, and
Valade
,
C.
,
1997
, “
The TTRS: 13 Constraints for Dimensioning and Tolerancing
,”
Fifth CIRP International Seminar on Computer-Aided Tolerancing
, Toronto, ON, Canada, Apr., pp. 73–82.
19.
Anselmetti
,
B.
,
Chavanne
,
R.
,
Yang
,
J.-X.
, and
Anwer
,
N.
,
2010
, “
Quick GPS: A New CAT System for Single-Part Tolerancing
,”
Comput.-Aided Des.
,
42
(
9
), pp.
768
780
.
20.
Haghighi
,
P.
,
Mohan
,
P.
,
Kalish
,
N.
,
Vemulapalli
,
P.
,
Shah
,
J. J.
, and
Davidson
,
J. K.
,
2015
, “
Toward Automatic Tolerancing of Mechanical Assemblies: First-Order GD&T Schema Development and Tolerance Allocation
,”
ASME J. Comput. Inf. Sci. Eng.
,
15
(
4
), p.
041003
.
21.
Ke-zheng
,
H.
, and
Huai-wei
,
R.
,
2008
, “A Growth Design Approach for Tolerancing,”
ASME
Paper No. DETC2008-49700.
22.
Wu
,
H.-C.
, and
Chang
,
T.-C.
,
1998
, “
Automated Setup Selection in Feature-Based Process Planning
,”
Int. J. Prod. Res.
,
36
(
3
), pp.
695
712
.
23.
Hossein Cheraghi
,
S.
, and
Liu
,
W.
,
2005
, “
Gamal Weheba. An Examination of the Effect of Variation in Datum Targets on Part Acceptance
,”
Int. J. Mach. Tools Manuf.
,
45
(9), pp.
1037
1046
.
24.
Hossein Cheraghi
,
S.
,
Jiang
,
G.
, and
Ahmad
,
J. S.
,
2003
, “
An Efficient Approach for the Identification of Candidate Datum Set for a Nominally Flat Primary Datum Feature
,”
Int. J. Mach. Tools Manuf.
,
43
(4), pp.
329
336
.
25.
Gou
,
J. B.
,
Chu
,
Y. X.
,
Xiong
,
Z. H.
, and
Li
,
Z. X.
,
2000
, “
A Geometric Method for Computation of Datum Reference Frames
,”
IEEE Trans. Rob. Autom.
,
16
(
6
), pp.
797
806
.
26.
Bhat
,
V.
, and
De Meter
,
E. C.
,
2000
, “
An Analysis of the Effect of Datum-Establishment Methods on the Geometric Errors of Machined Features
,”
Int. J. Mach. Tools Manuf.
,
40
(
13
), pp.
1951
1975
.
27.
Mei
,
J.
,
Zhang
,
H.-C.
, and
Oldham
,
W. J. B.
,
1995
, “
A Neural Network Approach for Datum Selection in Computer-Aided Process Planning
,”
Comput. Ind.
,
27
(
1
), pp.
53
64
.
28.
Lai
,
D. K. L.
, and
Yuen
,
M. M. F.
,
2012
, “
Vector Based Datum Transformation Scheme for Computer Aided Measurement
,”
Comput.-Aided Des. Appl.
,
9
(
3
), pp.
289
305
.
29.
Trevor
,
H.
,
Tibshirani
,
R.
, and
Friedman
,
J.
,
2001
,
The Elements of Statistical Learning
,
Springer
,
New York
.
30.
Jianrong
,
T.
, and
Shuyou
,
Z.
,
2006
,
Course in Fundamental Graphics
,
Higher Education Press
,
Beijing, China
.
31.
Junying
,
G.
, and
Hao
,
N.
,
2013
,
Engineering Graphics
,
National Defense Industry Press
,
Beijing, China
.
32.
Wang
,
J.
, and
Meng
,
G.
,
2013
,
220 Cases of Typical Mechanical Drawing
,
Chemical Industry Press
,
Beijing, China
, pp.
171
184
.
33.
Cover
,
T. M.
,
1967
, “
Nearest Neighbor Pattern Classification
,”
IEEE Trans. Inf. Theory
,
13
(
1
), pp.
21
27
.
34.
Cover
,
T. M.
,
1968
, “
Rates of Convergence for Nearest Neighbor Procedures
,”
Hawaii International Conference on System Sciences
, pp. 413–415.http://www-isl.stanford.edu/~cover/papers/paper009.pdf
35.
Wärmefjord
,
K.
,
Carlson
,
J. S.
, and
Söderberg
,
R.
,
2016
, “
Controlling Geometrical Variation Caused by Assembly Fixtures
,”
ASME J. Comput. Inf. Sci. Eng.
,
16
(
1
), p.
011007
.
36.
Söderberg
,
R.
, and
Lindkvist
,
L.
,
1999
, “
Computer Aided Assembly Robustness Evaluation
,”
J. Eng. Des.
,
10
(
2
), pp.
165
181
.
You do not currently have access to this content.