In this paper, an effective strategy is proposed to realize the smooth visualization of large-scale finite element models on a desktop computer. Based on multicore parallel and graphics processing unit (GPU) computing techniques, the large-scale data of a finite element model and the corresponding graphics data can be handled and rendered effectively. The proposed strategies mainly consist of four parts. First, a parallel surface extraction technology based on the dual connections of elements and nodes is developed to reduce the graphics data. Second, the OpenGL vertex buffer object (VBO) technology is used to improve the rendering efficiency after surface extraction. Third, the element-hiding and cut-surface functions are implemented to facilitate the observation of the interior of the meshes. Finally, the stream/filter architecture, which has the advantages of efficient computation and communication, is introduced to meet the needs of large-scale data processing and various visualization methods. These strategies are developed on the general visualization system SiPESC.Post. Using these strategies, SiPESC.Post implements high-performance display and real-time operation for large-scale finite element models, especially for models containing millions or tens of millions of elements. To demonstrate the superiority and feasibility of the presented strategies, large-scale numerical examples are presented, and the strategies are compared with several commercial finite element software systems and open-source visual postprocessing packages in terms of visualization efficiency.

References

References
1.
Owens
,
J. D.
,
Houston
,
M.
,
Luebke
,
D.
,
Green
,
S.
,
Stone
,
J. E.
, and
Phillips, J. C.
,
2008
, “
GPU Computing
,”
Proc. IEEE
,
96
(
5
), pp.
879
899
.
2.
Shi
,
Y. B.
,
Xiang
,
H.
, and
Yu
,
D. H.
,
2013
, “
Improvements of GPU Implementation of Nonlinear Soft Tissue Deformation With CHAI 3D
,”
Adv. Intell. Syst. Res.
,
84
, pp.
1203
1210
.
3.
Crockett
,
T. W.
,
1997
, “
An Introduction to Parallel Rendering
,”
Parallel Comput.
,
23
(
7
), pp.
819
843
.
4.
Larsen
,
M.
,
Moreland
,
K.
,
Johnson
,
C. R.
, and
Childs
,
H.
,
2016
, “
Optimizing Multi-Image Sort-Last Parallel Rendering
,”
IEEE Sixth Symposium on Large Data Analysis and Visualization
(
LDAV
), Baltimore, MD, Oct. 23–28, pp.
37
46
.
5.
Pacevic
,
R.
, and
Kaceniauskas
,
A.
,
2017
, “
The Development of VisLT Visualization Service in Openstack Cloud Infrastructure
,”
Adv. Eng. Software
,
103
, pp.
46
56
.
6.
DeCoro
,
C.
, and
Tatarchuk
,
N.
,
2007
, “
Real-Time Mesh Simplification Using the GPU
,”
Symposium on Interactive 3D Graphics and Games
(
I3D
), Seattle, WA, Apr. 30–May 2, pp.
161
166
.
7.
Zon
,
J.
, and
Ji
,
H. G.
,
2012
, “
Fast Visualization Algorithm for Huge 3D-Finite Element Models
,”
J. Graph.
,
33
(
4
), pp.
13
19
.
8.
Benes
,
S.
, and
Kruis
,
J.
,
2015
, “
Efficient Methods to Visualize Finite Element Meshes
,”
Adv. Eng. Software
,
79
, pp.
81
90
.
9.
Knuth
,
D.
,
1998
,
The Art of Computer Programming. Volume 3: Sorting and Searching
,
Addison-Wesley Professional
, Redwood City, CA.
10.
Brasher
,
M.
, and
Haimes
,
R.
,
2004
, “
Rendering Planar Cuts Through Quadratic and Cubic Finite Elements
,”
IEEE
Visualization, Austin, TX, Oct. 10–15, pp.
409
416
.
11.
Nelson
,
B.
,
Haimes
,
R.
, and
Kirby
,
R. M.
,
2011
, “
GPU-Based Interactive Cut-Surface Extraction From High-Order Finite Element Fields
,”
IEEE Trans. Visualization Comput. Graph.
,
17
(
12
), pp.
1803
1811
.
12.
Xu
,
L. Y.
,
Li
,
Y. P.
, and
Chen
,
B. S.
,
2015
, “
Design and Implementation of General Visual System SiPESC.POST for Large Scale Finite Element Computation
,”
Chin. J. Comput. Mech.
,
32
(
2
), pp.
220
224
.231.
13.
Lee
,
E. J.
, and
El-Tawil
,
S.
,
2008
, “
FEMvrml: An Interactive Virtual Environment for Visualization of Finite Element Simulation
,”
Adv. Eng. Software
,
39
(
9
), pp.
737
742
.
14.
Nelson
,
B.
,
Liu
,
E.
,
Kirby
,
R. M.
, and
Haimes
,
R.
,
2012
, “
ElVis: A System for the Accurate and Interactive Visualization of High-Order Finite Element Solutions
,”
IEEE Trans. Visualization Comput. Graph.
,
18
(
12
), pp.
2325
2334
.
15.
Livermore National Laboratory,
2005
, “
VisIt User's Manual, Version 1.5
,” Livermore National Laboratory, Livermore, CA.
16.
Ayachit, U.,
2016
, “
The ParaView Guide, Version 5.0
,” Kitware Inc., Clifton Park, NY.
17.
Zhang
,
H. W.
,
Chen
,
B. S.
,
Li
,
Y. P.
,
Zhang
,
S.
, and
Peng
,
H. J.
,
2011
, “
Advancement of Design and Implementation of SiPESC for Development of Integrated CAE Software Systems
,”
Comput. Aided Eng.
,
20
(
2
), pp.
39
49
.
18.
Pharr
,
M.
, and
Fernando
,
R.
,
2005
,
GPU Gems 2: Programming Techniques for High-Performance Graphics and General-Purpose Computation
,
Addison-Wesley Professional
, Redwood City, CA, pp.
457
470
.
19.
Shreiner
,
D.
,
Sellers
,
G.
,
Kessenich
,
J.
, and
Licea-Kane
,
B.
,
2012
,
OpenGL Programming Guide
(
The Khronos OpenGL ARB Working Group)
,
8th ed.
,
Addison-Wesley Professional
, Redwood City, CA, pp.
10
11
.
20.
Gamma
,
E.
,
Helm
,
R.
,
Jonnson
,
R.
, and
Vlissides, J.
,
1994
,
Design Patterns: Elements of Reusable Object-Oriented Software
,
Addison-Wesley
,
Reading, MA
, pp.
116
118
.
21.
Chandra
,
R.
,
2001
,
Parallel Programming in OpenMP
,
Morgan Kaufmann Publishers
, San Francisco, CA.
22.
Sanders
,
J.
, and
Kandrot
,
E.
,
2010
,
CUDA by Example: An Introduction to General-Purpose GPU Programming
,
Addison-Wesley, Upper Saddle River, NJ
.
You do not currently have access to this content.