This paper is arranged in three main sections: the first section is a hierarchical method based on clustering and a fuzzy membership system where the tessellated three-dimensional (3D) models are classified into their containing primitives: cylinder, cone, sphere, and flat. In the second section, automated assembly planning (AAP) is considered as the main application of our novel hierarchical primitive classification approach. The classified primitives obtained from the first section are used to define the removal directions between mating parts in an assembly model. Finally, a fuzzification method is used to express the uncertainty of the detected connections between every pair of parts. The acquired uncertainties are used in a user interaction process to approve, deny, or modify the connections with higher uncertainties.

References

References
1.
Liu
,
M.
, and
Ramani
,
K.
,
2010
, “
An Edge-Based Mesh Segmentation Method for Engineering Objects
,”
International Conference on Mechanic Automation and Control Engineering
(
MACE
), Wuhan, China, June 26–28, pp.
511
514
.
2.
Bhanu
,
B.
,
Lee
,
S.
,
Ho
,
C.
, and
Henderson
,
T.
,
1985
, “
Range Data Processing: Representation of Surfaces by Edges
,”
Eighth International Conference on Pattern Recognition
, Paris, France, pp. 236–238.http://www.cs.utah.edu/~tch/publications/pub70.pdf
3.
Besl
,
P. J.
, and
Jain
,
R. C.
,
1988
, “
Segmentation Through Variable-Order Surface Fitting
,”
IEEE Trans. Pattern Anal. Mach. Intell.
,
10
(
2
), pp.
167
192
.
4.
Lazarevic
,
D.
,
Misic
,
M.
, and
Stojcetovic
,
B.
,
2014
, “
3D Mesh Segmentation for CAD Application
,”
Eighth International Quality Conference
, Kragujevac, Serbia, May 23, pp.
617
629
.
5.
Benhabiles
,
H.
,
Vandeborre
,
J.-P.
,
Lavoué
,
G.
, and
Daoudi
,
M.
,
2010
, “
A Comparative Study of Existing Metrics for 3D-Mesh Segmentation Evaluation
,”
Visual Comput.
,
26
(
12
), pp.
1451
1466
.
6.
Attene
,
M.
,
Falcidieno
,
B.
, and
Spagnuolo
,
M.
,
2006
, “
Hierarchical Mesh Segmentation Based on Fitting Primitives
,”
Visual Comput.
,
22
(
3
), pp.
181
193
.
7.
Cohen-Steiner
,
D.
,
Alliez
,
P.
, and
Desbrun
,
M.
,
2004
, “
Variational Shape Approximation
,”
ACM Trans. Graphics (TOG)
,
23
(
3)
, pp.
905–914
.
8.
Xiao
,
D.
,
Lin
,
H.
,
Xian
,
C.
, and
Gao
,
S.
,
2011
, “
CAD Mesh Model Segmentation by Clustering
,”
Comput. Graphics
,
35
(
3
), pp.
685
691
.
9.
Kalogerakis
,
E.
,
Hertzmann
,
A.
,
Singh
,
K.
,
Kalogerakis
,
E.
,
Hertzmann
,
A.
, and
Singh
,
K.
,
2010
, “
Learning 3D Mesh Segmentation and Labeling
,”
ACM Trans. Graphics
,
29
(
4
), p. 102.
10.
Benhabiles
,
H.
,
Lavoué
,
G.
,
Vandeborre
,
J.-P.
, and
Daoudi
,
M.
,
2011
, “
Learning Boundary Edges for 3D-Mesh Segmentation
,”
Comput. Graphics Forum
,
30
(
8
), pp.
2170
2182
.
11.
Liu
,
R.
,
2009
, “Spectral Mesh Segmentation,”
Ph.D. dissertation
, Simon Fraser University, Burnaby, BC, Canada.https://dl.acm.org/citation.cfm?id=1925441
12.
Hu
,
R.
,
Fan
,
L.
, and
Liu
,
L.
,
2012
, “
Co-Segmentation of 3D Shapes Via Subspace Clustering
,”
Comput. Graphics Forum
,
31
(
5
), pp.
1703
1713
.
13.
Kim
,
H. S.
,
Choi
,
H. K.
, and
Lee
,
K. H.
,
2009
, “
Feature Detection of Triangular Meshes Based on Tensor Voting Theory
,”
Comput. Des.
,
41
(
1
), pp.
47
58
.
14.
Tierny
,
J.
,
2008
, “Reeb Graph Based 3D Shape Modeling and Applications,”
Ph.D. dissertation
, Université des Sciences et Technologie de Lille-Lille I, Villeneuve-d'Ascq, France.http://www.sci.utah.edu/~jtierny/phd_thesis.html
15.
Mangan
,
A. P.
, and
Whitaker
,
R. T.
,
1999
, “
Partitioning 3D Surface Meshes Using Watershed Segmentation
,”
IEEE Trans. Visual Comput. Graphics
,
5
(
4
), pp.
308
321
.
16.
Agathos
,
A.
,
Pratikakis
,
I.
,
Perantonis
,
S.
,
Sapidis
,
N.
, and
Azariadis
,
P.
,
2007
, “
3D Mesh Segmentation Methodologies for CAD applications
,”
Comput.-Aided Des. Appl.
,
4
(
6
), pp.
827
841
.
17.
Di Angelo, L.
,
Di Stefano, P.
, and
Morabito, A. E.
,
2007
, “
Fuzzy Sets for Geometric Shape Recognition in Triangular Meshes
,”
Sixth International Conference on Intelligent Processing and Manufacturing of Materials
(
IPMM
), Honolulu, HI, July 10–15, p.
29
.https://pdfs.semanticscholar.org/96cf/36c00970e68ea25da2162b7ef122e9cda919.pdf
18.
Ramalingam
,
S.
,
Liu
,
Z.-Q.
, and
Iourinski
,
D.
,
2006
, “
Curvature-Based Fuzzy Surface Classification
,”
IEEE Trans. Fuzzy Syst.
,
14
(
4
), pp. 573–589.
19.
Di Angelo
,
L.
, and
Di Stefano
,
P.
,
2015
, “
Geometric Segmentation of 3D Scanned Surfaces
,”
Comput. Des.
,
62
, pp.
44
56
.
20.
Zhang
,
X.
,
Li
,
G.
,
Xiong
,
Y.
, and
He
,
F.
,
2008
, “
3D Mesh Segmentation Using Mean-Shifted Curvature
,”
Advances in Geometric Modeling and Processing
,
Springer
,
Berlin
, pp.
465
474
.
21.
Yokoya
,
N.
, and
Levine
,
M. D.
,
1989
, “
Range Image Segmentation Based on Differential Geometry: A Hybrid Approach
,”
IEEE Trans. Pattern Anal. Mach. Intell.
,
11
(
6
), pp.
643
649
.
22.
Comaniciu
,
D.
,
Ramesh
,
V.
, and
Meer
,
P.
,
2001
, “
The Variable Bandwidth Mean Shift and Data-Driven Scale Selection
,”
Eighth IEEE International Conference on Computer Vision
(
ICCV
), Vancouver, BC, Canada, July 7–14, pp.
438
445.
23.
Yi
,
B.
,
Liu
,
Z.
,
Tan
,
J.
,
Cheng
,
F.
,
Duan
,
G.
, and
Liu
,
L.
,
2014
, “
Shape Recognition of CAD Models Via Iterative Slippage Analysis
,”
Comput. Des.
,
55
, pp.
13
25
.
24.
Di Angelo
,
L.
, and
Di Stefano
,
P.
,
2010
, “
C1 Continuities Detection in Triangular Meshes
,”
Comput. Des.
,
42
(
9
), pp.
828
839
.
25.
Yan
,
D.-M.
,
Liu
,
Y.
, and
Wang
,
W.
,
2006
, “Quadric Surface Extraction by Variational Shape Approximation,” International Conference on Geometric Modeling and Processing, Pittsburgh, PA, July 26–28, pp.
73
86
.
26.
Li
,
Y.
,
Wu
,
X.
,
Chrysathou
,
Y.
,
Sharf
,
A.
,
Cohen-Or
,
D.
, and
Mitra
,
N. J.
,
2011
, “
Globfit: Consistently Fitting Primitives by Discovering Global Relations
,”
ACM Trans. Graphics (TOG)
,
30
(
4
), p.
52
.
27.
Schnabel
,
R.
,
Degener
,
P.
, and
Klein
,
R.
,
2009
, “
Completion and Reconstruction With Primitive Shapes
,”
Comput. Graphics Forum
,
28
(
2
), pp.
503
512
.
28.
Sunil
,
V. B.
, and
Pande
,
S. S.
,
2008
, “
Automatic Recognition of Features From Freeform Surface CAD Models
,”
Comput. Des.
,
40
(
4
), pp.
502
517
.
29.
Lattin
,
J. M.
,
Carroll
,
J. D.
, and
Green
,
P. E.
,
2003
,
Analyzing Multivariate Data
,
Thomson Brooks/Cole
,
Pacific Grove, CA
.
30.
Romney
,
B.
,
Godard
,
C.
,
Goldwasser
,
M.
, and
Ramkumar
,
G.
,
1995
, “
An Efficient System for Geometric Assembly Sequence Generation and Evaluation
,”
International Computers in Engineering Conference
, pp.
699
712
.http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.93.9058&rep=rep1&type=pdf
You do not currently have access to this content.