Finite element analysis (FEA) has been one of the successful tools in studying mechanical behavior of biological materials. There are many instances where creating FE models requires extensive time and effort. Such instances include finite element analysis of tree branches with complex geometries and varying mechanical properties. Once a FE model of a tree branch is created, the model is not applicable to another branch, and all the modeling steps must be repeated for each new branch with a different geometry and, in some cases, material. In this paper, we describe a new and novel program “Immediate-TREE” and its associated guided user interface (GUI). This program provides researchers a fast and efficient tool to create finite element analysis of a large variety of tree branches. Immediate-TREE automates the process of creating finite element models with the use of computer-generated Python files. Immediate-TREE uses tree branch data (geometry, mechanical, and material properties) and generates Python files. Files were then run in finite element analysis software (abaqus) to complete the analysis. Immediate-TREE is approximately 240 times faster than creating the same model directly in the FEA software (abaqus). This new process can be used with a large variety of biological applications including analyses of bones, teeth, as well as known biological materials.

References

References
1.
Evans
,
L. S.
,
Kahn-Jeter
,
Z.
,
Torres
,
J.
,
Martinez
,
M.
, and
Tarsia
,
P.
,
2008
, “
Mechanical Stresses of Primary Branches: A Survey of 40 Woody Tree and Shrub Species
,”
Trees
,
22
(
3
), pp.
283
289
.
2.
Kane
,
B. R.
,
Farrell
,
R.
,
Zedaker
,
S.
,
Loferski
,
J.
, and
Smith
,
D.
,
2008
, “
Failure Mode and Prediction of the Strength of Branch Attachments
,”
Arboric. Urban For.
,
34
(
5
), pp.
308
316
.
3.
Beer
,
F. D.
,
Johnston
,
E.
,
DeWolf
,
J. T.
, and
Mazurek
,
D. F.
,
2012
,
Mechanics of Materials
,
6th ed.
,
McGraw-Hill
,
New York
.
4.
Wessolly
,
L.
, and
Erb
,
M.
,
1998
,
Handbuch der Baumstatik und Baumkontrolle
,
Patzer
,
Berlin
.
5.
Wilson
,
B. F.
, and
Archer
,
R. R.
,
1979
, “
Tree Design: Some Biological Solutions to Mechanical Problems
,”
Bioscience
,
29
(
5
), pp.
293
298
.
6.
Bertram
,
J. E.
,
1989
, “
Size-Dependent Differential Scaling in Branches: The Mechanical Design of Trees Revisited
,”
Trees
,
3
(
4
), pp.
241
253
.
7.
Anten
,
N. P.
, and
Schieving
,
F.
,
2010
, “
The Role of Wood Mass Density and Mechanical Constraints in the Economy of Tree Architecture
,”
Am. Nat.
,
175
(
2
), pp.
250
259
.
8.
Ennos
,
A.
, and
Casteren
,
A.
,
2010
, “
Transverse Stresses and Modes of Failure in Tree Branches and Other Beams
,”
Proc. Biol. Sci.
,
277
(
1685
), pp.
1253
1258
.
9.
King
,
D.
,
1986
, “
Tree Form, Height Growth and Susceptibility to Wind Damage in Acer Saccharum
,”
Ecology
,
67
(
4
), pp.
980
990
.
10.
Mayer
,
H.
,
1987
, “
Wind-Induced Tree Sways
,”
Trees
,
1
(
4
), pp.
195
206
.
11.
Peltola
,
H.
, and
Kellomäki
,
S.
,
1993
, “
A Mechanistic Model for Calculating Windthrow and Stem Breakage of Scots Pines at Stand Edge
,”
Silva Fenn.
,
27
(
2
), pp.
99
111
.
12.
Gardiner
,
B. A.
,
1994
, “
Wind and Wind Forces in a Plantation Spruce Forest
,”
Boundary-Layer Meteorol.
,
67
(
1
), pp.
161
186
.
13.
Gardiner
,
B. A.
,
Stacey
,
G. R.
,
Belcher
,
R. E.
, and
Wood
,
C. J.
,
1997
, “
Field and Wind Tunnel Assessments of the Implications of Respacing on Tree Stability
,”
Forestry
,
70
(
3
), pp.
233
252
.
14.
Peltola
,
H.
,
Kellomaki
,
S.
,
Vaisanen
,
H.
, and
Ikonen
,
V.-P.
,
1999
, “
A Mechanistic Model for Assessing the Risk of Wind and Snow Damage to Single Trees and Stands of Scots Pine, Norway Spruce and Birch
,”
Can. J. For. Res.
,
29
(
6
), pp.
647
661
.
15.
Gardiner
,
B. A.
,
Byrne
,
K.
,
Hale
,
S.
,
Kamimura
,
K.
,
Mitchell
,
S. J.
,
Peltola
,
H.
, and
Ruel
,
J.-C.
,
2007
, “
A Review of Mechanistic Modelling of Wind Damage Risk to Forests
,”
Forestry
,
81
(
3
), pp.
447
463
.
16.
Mitchell
,
S. J.
,
2013
, “
Wind as a Natural Disturbance Agent in Forests: A Synthesis
,”
Forestry
,
86
(
2
), pp.
147
157
.
17.
Kamimura
,
K.
,
Saito
,
S.
,
Kinoshita
,
H.
,
Kitagawa
,
K.
,
Uchida
,
T.
, and
Mizunaga
,
H.
,
2013
, “
Analysis of Wind Damage Caused by Multiple Tropical Storm Events in Japanese Cryptomeria Japonica Forests
,”
Forestry
,
86
(
4
), pp.
411
420
.
18.
Sellier
,
D.
,
Brunet
,
Y.
, and
Fourcaud
,
T.
,
2008
, “
A Numerical Model of Tree Aerodynamic Response to a Turbulent Airflow
,”
Forestry
,
81
(
3
), pp.
279
297
.
19.
Murphy
,
K. D.
, and
Rudnicki
,
M.
,
2012
, “
A Physics-Based Link Model for Tree Vibrations
,”
Am. J. Bot.
,
99
(
12
), pp.
1918
1929
.
20.
Clair
,
B.
,
Alméras
,
T.
,
Pilate
,
G.
,
Jullien
,
D.
,
Sugiyama
,
J.
, and
Riekel
,
C.
,
2011
, “
Maturation Stress Generation in Poplar Tension Wood Studied by Synchrotron Radiation Microdiffraction
,”
Plant Physiol.
,
155
(
1
), pp.
562
570
.
21.
Shahbazi
,
Z.
,
Kaminski
,
A.
, and
Evans
,
L. S.
,
2015
, “
Mechanical Bending Stress Analysis of Tree Branches
,”
Am. J. Mech. Eng.
,
3
(
2
), pp.
32
40
.
22.
Castéra
,
P.
, and
Morlier
,
V.
,
1991
, “
Growth Patterns and Bending Mechanics of Branches
,”
Trees
,
5
(
4
), pp.
232
238
.
23.
Niklas
,
K. J.
,
1999
, “
The Mechanical Role of Bark
,”
Am. J. Bot.
,
86
(
4
), pp.
465
469
.
24.
van Gelder
,
N. P.
,
Poorter
,
L.
, and
Sterck
,
F. J.
,
2006
, “
Wood Mechanics, Allometry, and Life-History Variation in a Tropical Rain Forest Tree Community
,”
New Phytol.
,
171
(
2
), pp.
367
378
.
25.
Green
,
D. W.
,
Winandy
,
J. E.
, and
Kretschmann
,
D. E.
,
2010
, “
Mechanical Properties of Wood
,”
Wood Handbook—Wood as an Engineering Material
,
100th ed.
,
U.S. Department of Agriculture Forest Service
,
Madison, WI
, pp.
101
102
.
26.
Mauseth
,
J. D.
,
1988
,
Plant Anatomy
,
The Blackburn Press
,
Caldwell, NJ
.
27.
Rost
,
T. L.
,
Barbour
,
M.
,
Stocking
,
G.
, and
Murphy
,
T. M.
,
2006
,
Plant Biology
,
2nd ed.
,
Thomson Brooks/Cole
,
Belmont, CA
.
28.
Mencuccini
,
M.
,
Grace
,
J.
, and
Fioravanti
,
M.
,
1997
, “
Biomechanical and Hydraulic Determinants of Tree Structures in Scots Pine: Anatomical Characteristics
,”
Tree Physiol.
,
17
(
2
), pp.
105
113
.
You do not currently have access to this content.