This paper presents the use of subassembly models instead of the entire assembly model to predict assembly quality defects at an automotive original equipment manufacturer (OEM). Specifically, artificial neural networks (ANNs) were used to predict assembly time and market value from assembly models. These models were converted into bipartite graphs from which 29 graph complexity metrics were extracted to train 18,900 ANN prediction models. The size of the training set, order of the bipartite graph, selection of training set, and defect type were experimentally studied. With a training size of 28 parts, an interpolation focused training set selection with a second-order graph seeding ensured that 70% of all predictions were within 100% of the target value. The study shows that with an increase in training size and careful selection of training sets, assembly defects can be predicted reliably from subassemblies' complexity data.

References

References
1.
Pahl
,
G.
,
Beitz
,
W.
,
Wallace
,
K.
, and
Blessing
,
L.
,
2007
,
Engineering Design: A Systematic Approach
,
Springer-Verlag
,
London
.
2.
Ullman
,
D. G.
,
2010
,
The Mechanical Design Process
,
McGraw-Hill
,
New York
.
3.
Hubka
,
V.
, and
Eder
,
W. E.
,
1988
,
Theory of Technical Systems
, Springer, Berlin.
4.
Hazelrigg
,
G.
,
1999
, “
An Axiomatic Framework for Engineering Design
,”
ASME J. Mech. Des.
,
121
(
3
), pp.
342
347
.
5.
Hauser
,
J. R.
, and
Clausing
,
D.
,
1988
, “
The House of Quality
,”
Harv. Bus. Rev.
,
66
(
3
), pp.
63
73
.https://hbr.org/1988/05/the-house-of-quality
6.
Dieter
,
G. E.
, and
Schmidt
,
L. C.
,
2013
,
Engineering Design
,
McGraw-Hill Education
,
New York
.
7.
Buede
,
D. M.
,
2009
,
The Engineering Design of Systems
, 2nd ed.,
Wiley
,
Hoboken, NJ
.
8.
Phelan
,
K.
,
Wilson
,
C.
,
Summers
,
J. D.
, and
Kurz
,
M. E.
,
2014
, “
A Case Study of Configuration Management Methods in a Major Automotive OEM
,”
ASME
Paper No. DETC2014-34186.
9.
Phelan
,
K. T.
,
Summers
,
J. D.
, and
Guarneri
,
P.
,
2014
, “
Engineering Change Management—Verification, Validation and Testing Planning Tool Development
,” The Tenth International Symposium on Tools and Methods of Competitive Engineering (TMCE), Budapest, Hungary, May 19–23, Paper No. 73.
10.
Eckert
,
C.
,
Clarkson
,
P. J.
, and
Zanker
,
W.
,
2004
, “
Change and Customisation in Complex Engineering Domains
,”
Res. Eng. Des.
,
15
(
1
), pp.
1
21
.
11.
Clarkson
,
P. J.
,
Simons
,
C.
, and
Eckert
,
C.
,
2004
, “
Predicting Change Propagation in Complex Design
,”
ASME J. Mech. Des.
,
126
(
5
), p.
788
.
12.
Shankar
,
P.
,
Mathieson
,
J.
,
Ramachandran
,
R.
,
Summers
,
J. D.
, and
Mocko
,
G. M.
,
2012
, “
Review of the Design Tools and Methods to Predict Change Propagation Pathways
,” The Ninth International Symposium on Tools and Methods of Competitive Engineering (TMCE), Karlsruhe, Germany, May 7–11, Paper No. 39.
13.
Shankar
,
P.
,
Morkos
,
B. W.
, and
Summers
,
J. D.
,
2012
, “
Reasons for Change Propagation: A Case Study in an Automotive OEM
,”
Res. Eng. Des.
,
23
(
4
), pp.
291
303
.
14.
Jarratt
,
T.
,
Eckert
,
C. M.
,
Caldwell
,
N.
, and
Clarkson
,
P. J.
,
2010
, “
Engineering Change: An Overview and Perspective on the Literature
,”
Res. Eng. Des.
,
22
(
2
), pp.
103
124
.
15.
Mathieson
,
J. L.
,
Wallace
,
B. A.
, and
Summers
,
J. D.
,
2010
, “
Assembly Time Modeling Through Connective Complexity Metrics
,”
International Conference on Manufacturing Automation
(
ICMA
), Hong Kong, China, Dec. 13–15, pp.
16
23
.
16.
Mathieson
,
J. L.
,
Arlitt
,
R.
,
Summers
,
J. D.
,
Stone
,
R.
,
Shanthakumar
,
A.
,
Sen
,
C.
,
Arlitt
,
R.
,
Summers
,
J. D.
, and
Stone
,
R.
,
2011
, “
Complexity as a Surrogate Mapping Between Function Models and Market Value
,”
ASME
Paper No. DETC2011-47481.
17.
Mohinder
,
C. V. S.
,
Gill
,
A.
, and
Summers
,
J. D.
,
2016
, “
Using Graph Complexity Connectivity Method to Predict Information From Design Representations—A Comparative Study
,”
Design Computing and Cognition’16
,
Chicago, IL
, June 27–29, pp. 667–683.
18.
Sridhar
,
S.
,
Fazelpour
,
M.
,
Gill
,
A.
, and
Summers
,
J. D.
,
2016
, “
Precision Analysis of the Graph Complexity Connectivity Method: Assembly and Function Model
,” Sixth CIRP Conference on Assembly Technologies and Systems (CIRP CATS), Gothenburg, Sweden, May 16–17, p.
1095
.
19.
Namouz
,
E. Z.
, and
Summers
,
J. D.
,
2014
, “
Comparison of Graph Generation Methods for Structural Complexity Based Assembly Time Estimation
,”
ASME J. Comput. Inf. Sci. Eng.
,
14
(
2
), p.
21003
.
20.
Namouz
,
E. Z.
, and
Summers
,
J. D.
,
2013
, “
Complexity Connectivity Metrics—Predicting Assembly Times With Low Fidelity Assembly CAD Models
,”
Smart Product Engineering
,
M.
Abramovici
and
R.
Stark
, eds.,
Springer
,
Berlin
, pp.
777
786
.
21.
Owensby
,
J. E.
,
Namouz
,
E. Z.
,
Shanthakumar
,
A.
, and
Summers
,
J. D.
,
2012
, “
Representation: Extracting Mate Complexity From Assembly Models to Automatically Predict Assembly Times
,”
ASME
Paper No. DETC2012-70995.
22.
Agatonovic-Kustrin
,
S.
, and
Beresford
,
R.
,
2000
, “
Basic Concepts of Artificial Neural Network (ANN) Modeling and Its Application in Pharmaceutical Research
,”
J. Pharm. Biomed. Anal.
,
22
(
5
), pp.
717
727
.
23.
Summers
,
J. D.
,
Vargas-Hernández
,
N.
,
Zhao
,
Z.
,
Shah
,
J. J.
, and
Lacroix
,
Z.
,
2001
, “
Comparative Study of Representation Structures for Modeling Function and Behavior of Mechanical Devices
,”
ASME
Paper No. DETC01/CIE-21243.http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.102.7758&rep=rep1&type=pdf
24.
Mathieson
,
J. L.
, and
Summers
,
J. D.
,
2010
, “
Complexity Metrics for Directional Node-Link System Representations: Theory and Applications
,”
ASME
Paper No. DETC2010-28561.
25.
Owensby
,
E.
,
Shanthakumar
,
A.
,
Rayate
,
V.
,
Namouz
,
E. Z.
, and
Summers
,
J. D.
,
2011
, “
Evaluation and Comparison of Two Design for Assembly Methods: Subjectivity of Information
,”
ASME
Paper No. DETC2011-47530.
26.
Widrow
,
B.
, and
Hoff
,
M.
,
1960
, “
Adaptive Switching Circuits
,”
Int. J. Commun. Network. Syst. Sci.
,
5
(9A), pp.
96
104
.
27.
Rumelhart
,
D. E.
,
Hinton
,
G. E.
, and
Williams
,
R. J.
,
2013
, “
Learning Internal Representations by Error Propagation
,”
Parallel Distributed Processing: Explorations in the Microstructure of Cognition
, Vol. 1, D. E. Rumelhart and J. L. McClelland, eds., MIT Press, Cambridge, MA, pp.
318
362
.
28.
Miller
,
M. G.
,
Summers
,
J. D.
,
Mathieson
,
J. L.
, and
Mocko
,
G. M.
,
2014
, “
Manufacturing Assembly Time Estimation Using Structural Complexity Metric Trained Artificial Neural Networks
,”
ASME J. Comput. Inf. Sci. Eng.
,
14
(
1
), p.
11005
.
29.
Namouz
,
E. Z.
, and
Summers
,
J. D.
,
2013
, “
Complexity Connectivity Metrics-Predicting Assembly Times With Abstract Assembly Models
,”
Smart Product Engineering
,
M.
Abramovici
and
R.
Stark
, eds.,
Springer
,
Berlin
, pp.
777
786
.
30.
Owensby
,
J. E.
, and
Summers
,
J. D.
,
2014
, “
Assembly Time Estimation: Assembly Mate Based Structural Complexity Metric Predictive Modeling
,”
ASME J. Comput. Inf. Sci. Eng.
,
14
(
1
), p.
11004
.
31.
Mathieson
,
J. L.
,
Wallace
,
B. A.
, and
Summers
,
J. D.
,
2013
, “
Assembly Time Modelling Through Connective Complexity Metrics
,”
Int. J. Comput. Integr. Manuf.
,
26
(10), pp. 955–967.
32.
Phelan
,
K.
,
Summers
,
J. D.
,
Pearce
,
B.
, and
Kurz
,
M. E.
,
2015
, “
Higher Order Interactions: Product and Configuration Study on DSM Saturation
,”
International Conference on Engineering Design
(
ICED
), Milan, Italy, July 27–30, pp.
1
10
.https://www.designsociety.org/publication/37878/higher_order_interactions_product_and_configuration_study_on_dsm_saturation
33.
Kohavi
,
R.
,
1995
, “
A Study of Cross-Validation and Bootstrap for Accuracy Estimation and Model Selection
,”
14th International Joint Conference on Artificial Intelligence
(
IJCAI
), Montreal, QC, Canada, Aug. 20–25, Vol.
2
, pp.
1137
1143
.http://dl.acm.org/citation.cfm?id=1643031.1643047
You do not currently have access to this content.