The need for capturing knowledge in the digital form in design, process planning, production, and inspection has increasingly become an issue in manufacturing industries as the variety and complexity of product lifecycle applications increase. Both knowledge and data need to be well managed for quality assurance, lifecycle impact assessment, and design improvement. Some technical barriers exist today that inhibit industry from fully utilizing design, planning, processing, and inspection knowledge. The primary barrier is a lack of a well-accepted mechanism that enables users to integrate data and knowledge. This paper prescribes knowledge management to address a lack of mechanisms for integrating, sharing, and updating domain-specific knowledge in smart manufacturing (SM). Aspects of the knowledge constructs include conceptual design, detailed design, process planning, material property, production, and inspection. The main contribution of this paper is to provide a methodology on what knowledge manufacturing organizations access, update, and archive in the context of SM. The case study in this paper provides some example knowledge objects to enable SM.

References

References
1.
SMLC
,
2011
, “
Implementing 21st Century Smart Manufacturing
,”
Workshop Summary Report
, Smart Manufacturing Leadership Coalition, Los Angeles, CA.https://smartmanufacturingcoalition.org/sites/default/files/implementing_21st_century_smart_manufacturing_report_2011_0.pdf
2.
Feeney
,
A. B.
,
Frechette
,
S.
, and
Srinivasan
,
V.
,
2015
, “
A Portrait of an ISO STEP Tolerancing Standard as an Enabler of Smart Manufacturing Systems
,”
ASME J. Comput. Inf. Sci. Eng.
,
15
(
2
), p.
021001
.
3.
Helu
,
M.
, and
Hedberg
,
T.
,
2015
, “
Enabling Smart Manufacturing Research and Development Using a Product Lifecycle Test Bed
,”
Procedia Manuf.
,
1
, pp.
86
97
.
4.
Atluru
,
S.
, and
Deshpande
,
A.
,
2009
, “
Data to Information: Can MTConnect Deliver the Promise
,”
Trans. NAMRI/SME
,
37
, pp.
197
204
.http://homepages.uc.edu/~atlurush/NAMRC2009.pdf
5.
Verhagen
,
W. J.
,
Bermell-Garcia
,
P.
,
van Dijk
,
R.
, and
Curran
,
R.
,
2012
, “
A Critical Review of Knowledge-Based Engineering: An Identification of Research Challenges
,”
Adv. Eng. Inf.
,
26
(
1
), pp.
5
15
.
6.
Hedberg
,
T.
, Jr.
,
Lubell
,
J.
,
Fischer
,
L.
,
Maggiano
,
L.
, and
Feeney
,
A.
,
2016
, “
Testing the Digital Thread in Support of Model-Based Manufacturing and Inspection
,”
ASME J. Comput. Inf. Sci. Eng.
,
16
(
2
), p.
021001
.
7.
Ackoff
,
R.
,
1989
, “
From Data to Wisdom
,”
J. Appl. Syst. Anal.
,
16
, pp.
3
9
.http://faculty.ung.edu/kmelton/documents/datawisdom.pdf
8.
Rowley
,
J.
,
2007
, “
The Wisdom Hierarchy: Representations of the DIKW Hierarchy
,”
J. Inf. Sci.
,
33
(
2
), pp.
163
180
.
9.
Hedberg
,
T.
,
Hartman
,
N.
,
Rosche
,
P.
, and
Fischer
,
K.
,
2017
, “
Identified Research Directions for Using Manufacturing Knowledge Earlier in the Product Life Cycle
,”
Int. J. Prod. Res.
,
55
(
3
), pp.
819
827
.
10.
Cloutier
,
R.
,
Muller
,
G.
,
Verma
,
D.
,
Nilchiani
,
R.
,
Hole
,
E.
, and
Bone
,
M.
,
2010
, “
The Concept of Reference Architectures
,”
Syst. Eng.
,
13
(
1
), pp.
14
27
.
11.
Papazoglou
,
M.
,
van den Heuvel
,
W.
, and
Mascolo
,
J.
,
2015
, “
A Reference Architecture and Knowledge-Based Structures for Smart Manufacturing Networks
,”
IEEE Software
,
32
(
3
), pp.
61
69
.
12.
Srinivasan
,
V.
,
2011
, “
An Integration Framework for Product Lifecycle Management
,”
Comput. Aided Des.
,
43
(
5
), pp.
464
478
.
13.
Lechevalier
,
D.
,
Narayanan
,
A.
, and
Rachuri
,
S.
,
2014
, “
Towards a Domain-Specific Framework for Predictive Analytics in Manufacturing
,”
IEEE International Conference on Big Data
(
Big Data
), Washington, DC, Oct. 27–30, pp.
987
995
.
14.
Lee
,
J.
,
Bagheri
,
B.
, and
Kao
,
H.
,
2015
, “
A Cyber-Physical Systems Architecture for Industry 4.0-Based Manufacturing Systems
,”
Manuf. Lett.
,
3
, pp.
18
23
.
15.
Gollapalli
,
M.
,
Li
,
X.
, and
Wood
,
I.
,
2013
, “
Automated Discovery of Multi-Faceted Ontologies for Accurate Query Answering and Future Semantic Reasoning
,”
Data Knowl. Eng.
,
87
, pp.
405
424
.
16.
Ameri
,
F.
,
Kulvatunyou
,
B.
,
Ivezic
,
N.
, and
Kaikhah
,
K.
,
2014
, “
Ontological Conceptualization Based on the SKOS
,”
ASME J. Comput. Inf. Sci. Eng.
,
14
(
3
), p.
031006
.
17.
Arnold
,
P.
, and
Rahm
,
E.
,
2014
, “
Enriching Ontology Mappings With Semantic Relations
,”
Data Knowl. Eng.
,
93
, pp.
1
18
.
18.
Kühne
,
T.
,
2006
, “
Matters of (Meta-) Modeling
,”
Software Syst. Model.
,
5
(
4
), pp.
369
385
.
19.
Chen
,
M.
,
Ebert
,
D.
,
Hagen
,
H.
,
Laramee
,
R.
,
Van Liere
,
R.
,
Ma
,
K.
,
Ribarsky
,
W.
,
Scheuermann
,
G.
, and
Silver
,
D.
,
2009
, “
Data, Information, and Knowledge in Visualization
,”
IEEE Comput. Graphics Appl.
,
29
(
1
), pp.
12
19
.
20.
Wasmer
,
A.
,
Staub
,
G.
, and
Vroom
,
R.
,
2011
, “
An Industry Approach to Shared, Cross-Organisational Engineering Change Handling—The Road Towards Standards for Product Data Processing
,”
Comput. Aided Des.
,
43
(
5
), pp.
533
545
.
21.
Ameri
,
F.
, and
Dutta
,
D.
,
2005
, “
Product Lifecycle Management: Closing the Knowledge Loops
,”
Comput. Aided Des. Appl.
,
2
(
5
), pp.
577
590
.
22.
Qu
,
S.
,
Jian
,
R.
,
Chu
,
T.
,
Wang
,
J.
, and
Tan
,
T.
,
2014
, “
Computational Reasoning and Learning for Smart Manufacturing Under Realistic Conditions
,”
IEEE International Conference on Behavior, Economic, and Social Computing
(
BESC
), Shanghai, China, Oct. 30–Nov. 1, pp.
1
8
.
23.
Brodsky
,
A.
, and
Luo
,
J.
,
2014
, “
Decision Guidance Analytics Language (DGAL): Toward Reusable Knowledge Base Centric Modeling
,” George Mason University, Fairfax, VA, Technical Report No. GMU-CS-TR-2014-6.
24.
Rebitzer
,
G.
,
Ekvall
,
T.
,
Frischknecht
,
R.
,
Hunkeler
,
D.
,
Norris
,
G.
,
Rydberg
,
T.
,
Schmidt
,
W.
,
Suh
,
S.
,
Weidema
,
B.
, and
Pennington
,
D.
,
2004
, “
Life Cycle Assessment—Part 1: Framework, Goal and Scope Definition, Inventory Analysis, and Applications
,”
Environ. Int.
,
30
(
5
), pp.
701
720
.
25.
Chandrasegaran
,
S.
,
Ramani
,
K.
,
Sriram
,
R.
,
Horvath
,
I.
,
Bernard
,
A.
,
Harik
,
R.
, and
Gao
,
W.
,
2013
, “
The Evolution, Challenges, and Future of Knowledge Representation in Product Design Systems
,”
Comput. Aided Des.
,
45
(
2
), pp.
204
228
.
26.
Kim
,
K.
, and
Kim
,
Y.
,
2011
, “
Causal Design Knowledge: Alternative Representation Method for Product Development Knowledge Management
,”
Comput. Aided Des.
,
43
(
9
), pp.
1137
1153
.
27.
Rachuri
,
S.
,
Han
,
Y.
,
Foufou
,
S.
,
Feng
,
S.
,
Roy
,
U.
,
Wang
,
F.
,
Sriram
,
R.
, and
Lyons
,
K.
,
2006
, “
A Model for Capturing Product Assembly Information
,”
ASME J. Comput. Inf. Sci. Eng.
,
6
(
1
), pp.
11
21
.
28.
Ouertani
,
M.
,
Baina
,
S.
,
Gzara
,
L.
, and
Morel
,
G.
,
2011
, “
Traceability and Management of Dispersed Product Knowledge During Design and Manufacturing
,”
Comput. Aided Des.
,
43
(
5
), pp.
546
562
.
29.
Ullman
,
D.
,
2002
, “
Toward the Ideal Mechanical Engineering Design Support System
,”
Res. Eng. Des.
,
13
(
2
), pp.
55
64
.
30.
Khadilkar
,
D. V.
, and
Stauffer
,
L. A.
,
1996
, “
An Experimental Evaluation of Design Information Reuse During Conceptual Design
,”
J. Eng. Des.
,
7
(
4
), pp.
331
339
.
31.
Baxter
,
D.
,
Gao
,
J.
,
Case
,
K.
,
Harding
,
J.
,
Young
,
B.
,
Cochrane
,
S.
, and
Dani
,
S.
,
2007
, “
An Engineering Design Knowledge Reuse Methodology Using Process Modelling
,”
Res. Eng. Des.
,
18
(
1
), pp.
37
48
.
32.
Horvath
,
L.
,
2014
, “
Towards Knowledge Driven Adaptive Product Representations
,”
Advances in Soft Computing, Intelligent Robotics and Control
,
Springer
,
Cham, Switzerland
, pp.
191
209
.
33.
Bhat
,
M.
,
Shah
,
S.
,
Das
,
P.
,
Kumar
,
P.
,
Kulkarni
,
N.
,
Ghaisas
,
S.
, and
Reddy
,
S.
,
2013
, “
PreMAP: Knowledge Driven Design of Materials and Engineering Process
,” International Conference on Research Into Design (
ICoRD
), Chennai, India, Jan. 7–9, pp.
1315
1329
.https://www.researchgate.net/publication/299735535_PREMLP_Knowledge_Driven_Design_of_Materials_and_Engineering_Process
34.
ISO
,
2007
, “
Enterprise-Control System Integration—Part 3: Activity Models of Manufacturing Operations Management
,” International Organization for Standardization, Geneva, Switzerland, Standard No.
IEC 62264-3:2007
.https://www.iso.org/standard/40949.html
35.
Muller-Merbach
,
H.
,
2007
, “
Kant’s Two Paths of Knowledge Creation: A Priori vs. A Posteriori
,”
Knowl. Manage. Res. Pract.
,
5
(
1
), pp.
64
65
.
36.
Donini
,
F. M.
,
Lenzerini
,
M.
,
Nardi
,
D.
,
Nutt
,
W.
, and
Schaerf
,
A.
,
1998
, “
An Epistemic Operator for Description Logics
,”
Artif. Intell.
,
100
(
1
), pp.
225
274
.
37.
Guazzelli
,
A.
,
Zeller
,
M.
,
Lin
,
W.-C.
, and
Williams
,
G.
,
2009
, “
PMML: An Open Standard for Sharing Models
,”
R J.
,
1
(
1
), pp.
60
65
.https://journal.r-project.org/archive/2009-1/RJournal_2009-1_Guazzelli+et+al.pdf
38.
Perez-Castillo
,
R.
,
De Guzman
,
I. G.-R.
, and
Piattini
,
M.
,
2011
, “
Knowledge Discovery Metamodel—ISO/IEC 19506: A Standard to Modernize Legacy Systems
,”
Comput. Stand. Interfaces
,
33
(
6
), pp.
519
532
.
39.
Hedberg
,
T.
,
Barnard Feeney
,
A.
,
Helu
,
M.
, and
Camelio
,
J.
,
2017
, “
Toward a Lifecycle Information Framework and Technology in Manufacturing
,”
ASME J. Comput. Inf. Sci. Eng.
,
17
(
2
), p.
021010
.
40.
ISO
,
2011
, “
Industrial Automation Systems and Integration—Physical Device Control—Dimensional Measuring Interface Standard (DMIS
),” International Organization for Standardization, Geneva, Switzerland, Standard No.
ISO 22093:2011
.https://www.iso.org/standard/56444.html
41.
DMSC
,
2015
, “
Quality Information Framework
,” Dimensional Metrology Standards Consortium, Burleson, TX, accessed July 15,
2016
, http://qifstandard.org
42.
Zhao
,
Y.
,
Horst
,
J.
,
Kramer
,
T.
,
Rippey
,
W.
, and
Brown
,
R.
,
2012
, “
Quality Information Framework—Integrating Metrology Processes
,”
IFAC Proc. Vol.
,
45
(
6
), pp.
1301
1308
.
43.
Barnard Feeney
,
A.
,
Frechette
,
S.
, and
Srinivasan
,
V.
,
2017
, “
Cyber-Physical Systems Engineering for Manufacturing
,”
Industrial Internet of Things: Cybermanufacturing Systems
,
S.
Jeschke
,
C.
Brecher
,
H.
Song
, and
D. B.
Rawat
, eds.,
Springer International Publishing
,
Cham, Switzerland
, pp.
81
110
.
You do not currently have access to this content.