Energy consumption in manufacturing has risen to be a global concern. Material selection in the product design phase is of great significance to energy conservation and emission reduction. However, because of the limitation of the current life-cycle energy analysis and optimization method, such concerns have not been adequately addressed in material selection. To fill in this gap, a process to build a comprehensive multi-objective optimization model for automated multimaterial selection (MOO–MSS) on the basis of cloud manufacturing is developed in this paper. The optimizing method, named local search-differential group leader algorithm (LS-DGLA), is a hybrid of differential evolution and local search with the group leader algorithm (GLA), constructed for better flexibility to handle different needs for various product designs. Compared with a number of evolutionary algorithms and nonevolutionary algorithms, it is observed that LS-DGLA performs better in terms of speed, stability, and searching capability.

References

References
1.
Huang
,
H.
, and
Ameta
,
G.
,
2014
, “
A Novel Pattern for Energy Estimation Framework and Tools to Compute Energy Consumption in Product Life Cycle
,”
ASME J. Comput. Inf. Sci. Eng.
,
14
(
1
), p.
011002
.
2.
Ashby
,
M. F.
, and
Cebon
,
D.
,
1993
, “
Materials Selection in Mechanical Design
,”
Le Journal de Physique IV
,
3
(
C7
), pp.
C7-1
C7-9
.
3.
Li
,
W.
, and
Kara
,
S.
,
2011
, “
An Empirical Model for Predicting Energy Consumption of Manufacturing Processes: A Case of Turning Process
,”
Proc. Inst. Mech. Eng. Part B
,
225
(
9
), pp.
1636
1646
.
4.
Kara
,
S.
, and
Li
,
W.
,
2011
, “
Unit Process Energy Consumption Models for Material Removal Processes
,”
CIRP Ann. Manuf. Technol.
,
60
(
1
), pp.
37
40
.
5.
Li
,
W.
,
Winter
,
M.
,
Kara
,
S.
, and
Herrmann
,
C.
,
2012
, “
Eco-Efficiency of Manufacturing Processes: A Grinding Case
,”
CIRP Ann. Manuf. Technol.
,
61
(
1
), pp.
59
62
.
6.
Narita
,
H.
,
Desmira
,
N.
, and
Fujimoto
,
H.
,
2008
, “
Environmental Burden Analysis for Machining Operation Using LCA Method
,”
Manufacturing Systems and Technologies for the New Frontier
,
Springer
,
Berlin
, pp.
65
68
.
7.
Sun
,
Z.
, and
Li
,
L.
,
2013
, “
Opportunity Estimation for Real-Time Energy Control of Sustainable Manufacturing Systems
,”
IEEE Trans. Autom. Sci. Eng.
,
10
(
1
), pp.
38
44
.
8.
Mose
,
C.
, and
Weinert
,
N.
,
2015
, “
Process Chain Evaluation for an Overall Optimization of Energy Efficiency in Manufacturing: The Welding Case
,”
Rob. Comput. Integr. Manuf.
,
34
, pp.
44
51
.
9.
Bi
,
Z. M.
, and
Wang
,
L.
,
2012
, “
Energy Modeling of Machine Tools for Optimization of Machine Setups
,”
IEEE Trans. Autom. Sci. Eng.
,
9
(
3
), pp.
607
613
.
10.
Hopf
,
H.
, and
Müller
,
E.
,
2015
, “
Providing Energy Data and Information for Sustainable Manufacturing Systems by Energy Cards
,”
Rob. Comput. Integr. Manuf.
,
36
, pp.
76
83
.
11.
Mayyas
,
A. T.
,
Qattawi
,
A.
,
Mayyas
,
A. R.
, and
Omar
,
M. A.
,
2012
, “
Life Cycle Assessment-Based Selection for a Sustainable Lightweight Body-in-White Design
,”
Energy
,
39
(
1
), pp.
412
425
.
12.
Mashaei
,
M.
, and
Lennartson
,
B.
,
2013
, “
Energy Reduction in a Pallet-Constrained Flow Shop Through On–Off Control of Idle Machines
,”
IEEE Trans. Autom. Sci. Eng.
,
10
(
1
), pp.
45
56
.
13.
Frigerio
,
N.
, and
Matta
,
A.
,
2015
, “
Energy-Efficient Control Strategies for Machine Tools With Stochastic Arrivals
,”
IEEE Trans Autom. Sci. Eng.
,
12
(
1
), pp.
50
61
.
14.
Wegst
,
U. G. K.
, and
Ashby
,
M. F.
,
2002
, “
Materials Selection and Design of Products With Low Environmental Impact
,”
Adv. Eng. Mater.
,
4
(
6
), pp.
378
383
.
15.
Zhang
,
H. C.
, and
Li
,
H.
,
2010
, “
An Energy Factor Based Systematic Approach to Energy-Saving Product Design
,”
CIRP Ann. Manuf. Technol.
,
59
(
1
), pp.
183
186
.
16.
Sakao
,
T.
,
2007
, “
A QFD-Centred Design Methodology for Environmentally Conscious Product Design
,”
Int. J. Prod. Res.
,
45
(
18–19
), pp.
4143
4162
.
17.
Fitch
,
P. E.
, and
Cooper
,
J. S.
,
2004
, “
Life Cycle Energy Analysis as a Method for Material Selection
,”
ASME J. Mech. Des.
,
126
(
5
), pp.
798
804
.
18.
Xu
,
X.
,
2012
, “
From Cloud Computing to Cloud Manufacturing
,”
Rob. Comput. Integr. Manuf.
,
28
(
1
), pp.
75
86
.
19.
Wang
,
L.
,
Wang
,
X. V.
,
Gao
,
L.
, and
Váncza
,
J.
,
2014
, “
A Cloud-Based Approach for WEEE Remanufacturing
,”
CIRP Ann. Manuf. Technol.
,
63
(
1
), pp.
409
412
.
20.
Wang
,
X. V.
, and
Xu
,
X. W.
,
2013
, “
An Interoperable Solution for Cloud Manufacturing
,”
Rob. Comput. Integr. Manuf.
,
29
(
4
), pp.
232
247
.
21.
Yuan
,
C.
,
Zhai
,
Q.
, and
Dornfeld
,
D.
,
2012
, “
A Three Dimensional System Approach for Environmentally Sustainable Manufacturing
,”
CIRP Ann. Manuf. Technol.
,
61
(
1
), pp.
39
42
.
22.
Giudice
,
F.
,
Rosa
,
G. L.
, and
Risitano
,
A.
,
2005
, “
Materials Selection in the Life-Cycle Design Process: A Method to Integrate Mechanical and Environmental Performances in Optimal Choice
,”
Mater. Des.
,
26
(
1
), pp.
9
20
.
23.
Jahan
,
A.
,
Mustapha
,
F.
,
Ismail
,
M. Y.
,
Sapuan
,
S. M.
, and
Bahraminasab
,
M.
,
2011
, “
A Comprehensive VIKOR Method for Material Selection
,”
Mater. Des.
,
32
(
3
), pp.
1215
1221
.
24.
Rao
,
R. V.
,
2008
, “
A Decision Making Methodology for Material Selection Using an Improved Compromise Ranking Method
,”
Mater. Des.
,
29
(
10
), pp.
1949
1954
.
25.
Shanian
,
A.
, and
Savadogo
,
O.
,
2006
, “
A Non-Compensatory Compromised Solution for Material Selection of Bipolar Plates for Polymer Electrolyte Membrane Fuel Cell (PEMFC) Using ELECTRE IV
,”
Electrochim. Acta
,
51
(
25
), pp.
5307
5315
.
26.
Chatterjee
,
P.
,
Athawale
,
V. M.
, and
Chakraborty
,
S.
,
2009
, “
Selection of Materials Using Compromise Ranking and Outranking Methods
,”
Mater. Des.
,
30
(
10
), pp.
4043
4053
.
27.
Jee
,
D. H.
, and
Kang
,
K. J.
,
2000
, “
A Method for Optimal Material Selection Aided With Decision Making Theory
,”
Mater. Des.
,
21
(
3
), pp.
199
206
.
28.
Mayyas
,
A.
,
Shen
,
Q.
,
Mayyas
,
A.
,
Abdelhamid
,
M.
,
Shan
,
D.
,
Qattawi
,
A.
, and
Omar
,
M.
,
2011
, “
Using Quality Function Deployment and Analytical Hierarchy Process for Material Selection of Body-in-White
,”
Mater. Des.
,
32
(
5
), pp.
2771
2782
.
29.
Liao
,
T. W.
,
1996
, “
A Fuzzy Multicriteria Decision-Making Method for Material Selection
,”
J. Manuf. Syst.
,
15
(
1
), pp.
1
12
.
30.
Liao
,
T. W.
,
2015
, “
Two Interval Type 2 Fuzzy TOPSIS Material Selection Methods
,”
Mater. Des.
,
88
, pp.
1088
1099
.
31.
Rao
,
R. V.
, and
Davim
,
J. P.
,
2008
, “
A Decision-Making Framework Model for Material Selection Using a Combined Multiple Attribute Decision-Making Method
,”
Int. J. Adv. Manuf. Technol.
,
35
(
7
), pp.
751
760
.
32.
Chatterjee
,
P.
, and
Chakraborty
,
S.
,
2012
, “
Material Selection Using Preferential Ranking Methods
,”
Mater. Des.
,
35
, pp.
384
393
.
33.
Jahan
,
A.
,
Ismail
,
M. Y.
,
Mustapha
,
F.
, and
Sapuan
,
S. M.
,
2010
, “
Material Selection Based on Ordinal Data
,”
Mater. Des.
,
31
(
7
), pp.
3180
3187
.
34.
Chan
,
J. W. K.
, and
Tong
,
T. K. L.
,
2007
, “
Multi-Criteria Material Selections and End-of-Life Product Strategy: Grey Relational Analysis Approach
,”
Mater. Des.
,
28
(
5
), pp.
1539
1546
.
35.
Rao
,
R. V.
,
2006
, “
A Material Selection Model Using Graph Theory and Matrix Approach
,”
Mater. Sci. Eng. A
,
431
(
1–2
), pp.
248
255
.
36.
Fayazbakhsh
,
K.
,
Abedian
,
A.
,
Manshadi
,
B. D.
, and
Khabbaz
,
R. S.
,
2009
, “
Introducing a Novel Method for Materials Selection in Mechanical Design Using Z-Transformation in Statistics for Normalization of Material Properties
,”
Mater. Des.
,
30
(
10
), pp.
4396
4404
.
37.
Wu
,
D.
,
Thames
,
J. L.
,
Rosen
,
D. W.
, and
Schaefer
,
D.
,
2013
, “
Enhancing the Product Realization Process With Cloud-Based Design and Manufacturing Systems
,”
ASME J. Comput. Inf. Sci. Eng.
,
13
(
4
), p.
041004
.
38.
Lehmhus
,
D.
,
Wuest
,
T.
,
Wellsandt
,
S.
,
Bosse
,
S.
,
Kaihara
,
T.
,
Thoben
,
K. D.
, and
Busse
,
M.
,
2015
, “
Cloud-Based Automated Design and Additive Manufacturing: A Usage Data-Enabled Paradigm Shift
,”
Sensors
,
15
(
12
), pp.
32079
32122
.
39.
Coutee
,
A. S.
,
Mcdermott
,
S. D.
, and
Bras
,
B.
,
2001
, “
A Haptic Assembly and Disassembly Simulation Environment and Associated Computational Load Optimization Techniques
,”
ASME J. Comput. Inf. Sci. Eng.
,
1
(
2
), pp.
113
122
.
40.
Zhou
,
C. C.
,
Yin
,
G. F.
, and
Hu
,
X. B.
,
2009
, “
Multi-Objective Optimization of Material Selection for Sustainable Products: Artificial Neural Networks and Genetic Algorithm Approach
,”
Mater. Des.
,
30
(
4
), pp.
1209
1215
.
41.
Cui
,
X.
,
Wang
,
S.
, and
Hu
,
S. J.
,
2008
, “
A Method for Optimal Design of Automotive Body Assembly Using Multi-Material Construction
,”
Mater. Des.
,
29
(
2
), pp.
381
387
.
42.
Zhang
,
X. J.
,
Chen
,
K. Z.
, and
Feng
,
X. A.
,
2008
, “
Material Selection Using an Improved Genetic Algorithm for Material Design of Components Made of a Multiphase Material
,”
Mater. Des.
,
29
(
5
), pp.
972
981
.
43.
Ramanujan
,
D.
,
Bernstein
,
W. Z.
,
Benjamin
,
W.
,
Ramani
,
K.
,
Elmqvist
,
N.
,
Kulkarni
,
D.
, and
Tew
,
J.
,
2015
, “
A Framework for Visualization-Driven, Eco-Conscious Design Exploration
,”
ASME J. Comput. Inf. Sci. Eng.
,
15
(
4
), p.
041010
.
44.
Chattopadhyay
,
A.
,
Stentz
,
J.
, and
Gadh
,
R.
,
2012
, “
Modeling an Radio Frequency Identification Asset Management Solution Hosted on a Cloud Service and Its Characterization
,”
ASME J. Comput. Inf. Sci. Eng.
,
12
(
4
), p.
041008
.
45.
Yang
,
H.
,
Srinivasan
,
R.
,
Spoll
,
J.
, and
Ameta
,
G.
,
2015
, “
Graph Based Method and Tool for Complete and Selective Disassembly Time Estimation in Early Design
,”
ASME J. Comput. Inf. Sci. Eng.
,
15
(
3
), p.
031005
.
46.
Feng
,
S. C.
,
Kramer
,
T.
,
Sriram
,
R. D.
,
Lee
,
H.
,
Joung
,
C. B.
, and
Ghodous
,
P.
,
2013
, “
Disassembly Process Information Model for Remanufacturing
,”
ASME J. Comput. Inf. Sci. Eng.
,
13
(
3
), p.
031004
.
47.
Park
,
J. H.
,
Seo
,
K. K.
,
Wallace
,
D.
, and
Lee
,
K. I.
,
2002
, “
Approximate Product Life Cycle Costing Method for the Conceptual Product Design
,”
CIRP Ann. Manuf. Technol.
,
51
(
1
), pp.
421
424
.
48.
Shehab
,
E. M.
, and
Abdalla
,
H. S.
,
2001
, “
Manufacturing Cost Modelling for Concurrent Product Development
,”
Rob. Comput. Integr. Manuf.
,
17
(
4
), pp.
341
353
.
49.
Sutherland
,
J. W.
,
Jenkins
,
T. L.
, and
Haapala
,
K. R.
,
2010
, “
Development of a Cost Model and Its Application in Determining Optimal Size of a Diesel Engine Remanufacturing Facility
,”
CIRP Ann. Manuf. Technol.
,
59
(
1
), pp.
49
52
.
50.
Daskin
,
A.
, and
Kais
,
S.
,
2011
, “
Group Leaders Optimization Algorithm
,”
Mol. Phys.
,
109
(
5
), pp.
761
772
.
You do not currently have access to this content.