In the geometric simulation of multi-axis milling, a dexel representation solid model is frequently used. In this modeling method, the object shape is defined as a collection of vertical segments (dexels) based on a two-dimensional regular square grid in the XY plane. In this paper, the authors propose the quad pillars algorithm and its enhanced version named the delta pillars algorithm for converting a dexel model to an equivalent polyhedral stereolithography (STL) model. These algorithms define a series of vertical pillar shapes for each square cell of the grid to represent the object shape as a bundle of pillars. The final polyhedral model is obtained by performing a simplified Boolean union operation of the pillar shapes. Unlike prior methods, the proposed algorithms are simple and fast and are guaranteed to generate a watertight polyhedral model without holes, gaps, or T-junctions. An experimental system is implemented and conversion tests are performed. The system converted a dexel model based on a high-resolution grid to a polyhedral model in a practical amount of time.

References

References
1.
VanHook
,
T.
,
1986
, “
Real-Time Shaded Milling Display
,”
Comput. Graphics (Proc. of ACM Siggraph 86)
,
20
(
4
) pp.
15
20
.
2.
Huang
,
Y.
, and
Oliver
,
J. H.
,
1994
, “
NC Milling Error Assessment and Tool Path Correction
,”
Comput. Graphics (Proc. of ACM Siggraph 94)
ACM, New York, pp.
287
294
.
3.
Stifter
,
S.
,
1995
, “
Simulation of NC Machining Based on the Dexel Model: A Critical Analysis
,”
Int. J. Adv. Manuf. Technol.
,
10
(
3
), pp.
149
157
.
4.
Menon
,
J. P.
,
Marisa
,
R. J.
, and
Zagajac
,
J.
,
1994
, “
More Powerful Solid Modeling Through Ray Representations
,”
IEEE Comput. Graphics Appl.
,
14
(
3
), pp.
22
35
.
5.
Zhu
,
W.
,
2003
, “
Virtual Sculpting and Polyhedral Machining Planning System With Haptic Interface
,”
Ph.D thesis
, North Carolina State University, Raleigh, NC.
6.
Zhu
,
W.
, and
Lee
,
Y.-S.
,
2004
, “
Virtual Sculpting and Multi-Axis Polyhedral Machining Planning Methodology With 5-DOF Haptic Interface
,”
EuroHaptics
, Munich, Germany, June 5–7, pp.
267
272
.
7.
Zhu
,
W.
, and
Lee
,
Y.-S.
,
2005
, “
A Visibility Sphere Marching Algorithm of Constructing Polyhedral Models for Haptic Sculpting and Product Prototyping
,”
Rob. Comput. Integr. Manuf.
,
21
(
1
), pp.
19
36
.
8.
Yuksek
,
K.
,
Zhang
,
W.
,
Ridzalski
,
B. I.
, and
Leu
,
M. C.
,
2008
, “
A New Contour Reconstruction Approach From Dexel Data in Virtual Sculpting
,”
IEEE
3rd International Conference on Geometric Modeling and Imaging
, July 9–11, pp.
82
86
.
9.
Herman
,
G. T.
, and
Liu
,
H. K.
,
1979
, “
Three-Dimensional Display of Organs From Computed Tomograms
,”
Comput. Graphics Image Process.
,
9
(
1
), pp.
1
21
.
10.
Dutta
,
D.
,
Prinz
,
F. B.
,
Rosen
,
D.
, and
Wess
,
L.
,
2000
, “
Layered Manufacturing: Current Status and Future Trends
,”
ASME J. Comput. Inf. Sci. Eng.
,
1
(
1
), pp.
60
71
.
11.
Chiu
,
W. K.
, and
Tan
,
S. T.
,
1998
, “
Using Dexels to Make Hollow Models for Rapid Prototyping
,”
Comput. Aided Des.
,
30
(
7
), pp.
539
547
.
12.
Wang
,
C. C. L.
,
2011
, “
Approximate Boolean Operations on Large Polyhedral Solids With Partial Mesh Reconstruction
,”
IEEE Trans. Visualization Comput. Graphics
,
17
(
6
), pp.
836
849
.
13.
Qian
,
X.
,
Villarrubia
,
J.
,
Tian
,
F.
, and
Dixson
,
R.
,
2007
, “
Image Simulation and Surface Reconstruction of Undercut Features in Atomic Force Microscopy
,”
Proc. SPIE
,
6518
, p.
651811
.
14.
Shade
,
J.
,
Gortler
,
S.
,
He
,
L. W.
, and
Szeliski
,
R.
,
1998
, “
Layered Depth Image
,”
Comput. Graphics (Proc. of ACM Siggraph’98)
, ACM, New York, pp.
231
242
.
15.
Wang
,
C. C. L.
, and
Manocha
,
D.
,
2013
, “
GPU-Based Offset Surface Computation Using Point Samples
,”
Comput. Aided Des.
,
45
(
2
), pp.
321
330
.
16.
Wang
,
C. C. L.
,
2011
, “
Computing on Rays: A Parallel Approach for Surface Mesh Modeling From Multi-Material Volumetric Data
,”
Comput. Ind.
,
62
(
7
), pp.
660
671
.
17.
Zhao
,
H.
, and
Wang
,
C. C. L.
,
2011
, “
Parallel and Efficient Boolean on Polygonal Solids
,”
Visual Comput.
,
27
(
6–8
) pp.
507
517
.
18.
Benouamer
,
M. O.
, and
Michelucci
,
D.
,
1997
, “
Bridging the Gap between CSG and Brep via a Triple Ray Representation
,”
ACM
Symposium on Solid Modeling and Applications
, pp.
68
79
.
19.
Muller
,
H.
,
Surmann
,
T.
,
Stautner
,
M.
,
Albersmann
,
F.
, and
Weinert
,
K.
,
2003
, “
Online Sculpting and Visualization of Multi-Dexel Volumes
,” 8th
ACM
Symposium on Solid Modeling and Applications
, pp.
258
261
.
20.
Ren
,
Y.
,
Zhu
,
W.
, and
Lee
,
Y.-S.
,
2008
, “
Feature Conservation and Conversion of Tri-Dexel Volumetric Models to Polyhedral Surface Models for Product Prototyping
,”
Comput. Aided Des. Appl.
,
5
(
6
), pp.
932
941
.
21.
Zhang
,
W.
, and
Leu
,
M. C.
,
2008
, “
NC Machining Simulation Based on Triple-Dexel Representation
,”
2008 International Symposium on Flexible Automation
, Paper No. ISFA2008U_100.
22.
Koenig
,
A. H.
, and
Groller
,
E.
,
1998
, “
Real Time Simulation and Visualization of NC Milling Processes for Inhomogeneous Materials on Low-End Graphics Hardware
,” Computer Graphics International 98,
IEEE
Computer Society, June 26, pp.
338
349
.
23.
Lorensen
,
W. E.
, and
Cline
,
H. E.
,
1987
, “
Marching Cubes: A High Resolution 3D Surface Construction Algorithm
,”
Comput. Graphics
,
21
(
4
) pp.
163
169
.
24.
Ju
,
T.
,
Losasso
,
F.
,
Schaefer
,
S.
, and
Warren
,
J.
,
2002
, “
Dual Contouring of Hermite Data
,”
Comput. Graphics (Proc. of ACM Siggraph 2002)
,
21
(
3
), pp.
339
346
.
25.
Gelden
,
A. V.
, and
Wilhelms
,
J.
,
1994
, “
Topological Considerations in Isosurface Generation
,”
ACM Trans. Graphics
,
13
(
4
), pp.
337
375
.
26.
Meyers
,
D.
,
Skinner
,
S.
, and
Sloan
,
K.
,
1992
, “
Surface From Contours
,”
ACM Trans. Graphics
,
11
(
3
), pp.
228
258
.
27.
Hoppe
,
H.
,
DeRose
,
T.
,
Duchamp
,
T.
,
McDonald
,
J.
, and
Stuetzle
,
W.
,
1992
, “
Surface Reconstruction From Unorganized Points
,”
Computer. Graphics (Proc. SIGGRAPH’92)
, pp.
71
78
.
28.
Kobbelt
,
L. P.
,
Botsch
,
M.
,
Schwanecke
,
U.
, and
Seidel
,
H.-P.
,
2001
, “
Feature Sensitive Surface Extraction From Volume Data
,”
Computer Graphics (SIGGRAPH’01)
, pp.
57
66
.
29.
Lauterbach
,
C.
,
Garland
,
M.
,
Sengupta
,
S.
,
Luebke
,
D.
, and
Manocha
,
D.
,
2009
, “
Fast BVH Construction on GPUs
,”
Comp. Graphics Forum
,
28
(
2
), pp.
375
384
.
30.
NVIDIA,
2012
, “
CUDA C Programming Guide
,” NVIDIA, Santa Clara, CA, Document No.
PG-02929-001_v5.0
.
You do not currently have access to this content.