Additive manufacturing, also known as three-dimensional (3D) printing, enables production of complex customized shapes without requiring specialized tooling and fixture, and mass customization can then be realized with larger adoption. The slicing procedure is one of the fundamental tasks for 3D printing, and the slicing resolution has to be very high for fine fabrication, especially in the recent developed continuous liquid interface production (CLIP) process. The slicing procedure is then becoming the bottleneck in the prefabrication process, which could take hours for one model. This becomes even more significant in mass customization, where hundreds or thousands of models have to be fabricated. We observe that the customized products are generally in a same homogeneous class of shape with small variation. Our study finds that the slicing information of one model can be reused for other models in the same homogeneous group under a properly defined parameterization. Experimental results show that the reuse of slicing information has a maximum of 50 times speedup, and its utilization is dropped from more than 90% to less than 50% in the prefabrication process.

References

References
1.
Pine
,
B. J.
,
1993
,
Mass Customization: The New Frontier in Business Competition
,
Harvard Business School Press
,
Boston, MA
.
2.
Bourell
,
D. L.
,
Leu
,
M. C.
, and
Rosen
,
D. W.
,
2009
, “
Roadmap for Additive Manufacturing: Identifying the Future of Freeform Processing
,” Technical Report, The University of Texas at Austin, Austin, TX.
3.
Gibson
,
I.
,
Rosen
,
D. W.
, and
Stucker
,
B.
,
2009
,
Additive Manufacturing Technologies: Rapid Prototyping to Direct Digital Manufacturing
,
1st ed.
,
Springer
, Berlin.
4.
Wohlers
,
T.
,
2013
, “
Wohlers Report: Additive Manufacturing and 3D Printing State of the Industry
,” Technical Report, Wohlers Associates, Fort Collins, CO.
5.
Tumbleston
,
J. R.
,
Shirvanyants
,
D.
,
Ermoshkin
,
N.
,
Janusziewicz
,
R.
,
Johnson
,
A. R.
,
Kelly
,
D.
,
Chen
,
K.
,
Pinschmidt
,
R.
,
Rolland
,
J. P.
,
Ermoshkin
,
A.
,
Samulski
,
E. T.
, and
Joseph M. Desimone
,
J. M.
,
2015
, “
Continuous Liquid Interface Production of 3D Objects
,”
Science
,
347
(
6228
), pp.
1349
1352
.
6.
Hildebrand
,
K.
, and
Alexa
,
M.
,
2013
, “
Sketch-Based Pipeline for Mass Customization
,”
ACM SIGGRAPH
Talks,
ACM
, p.
37
.
7.
Luo
,
B.
, and
Hancok
,
E. R.
,
1997
, “
Slice Interpolation Using the Distance Transform and Morphing
,”
13th International Conference on Digital Signal Processing
, Vol.
2
,
IEEE
, pp.
1083
1086
.
8.
Kirschman
,
C. F.
, and
Jara-Almonte
,
C. C.
,
1992
. “
A Parallel Slicing Algorithm for Solid Freeform Fabrication Processes
,”
International Solid Freeform Fabrication Symposium
, pp.
26
33
.
9.
Cao
,
W.
, and
Miyamoto
,
Y.
,
2003
, “
Direct Slicing From AutoCAD Solid Models for Rapid Prototyping
,”
Int. J. Adv. Manuf. Technol.
,
21
(
10
), pp.
739
742
.
10.
Chakraborty
,
D.
, and
Choudhury
,
A. R.
,
2007
, “
A Semi-Analytic Approach for Direct Slicing of Free Form Surfaces for Layered Manufacturing
,”
Rapid Prototyping J.
,
13
(
4
), pp.
256
264
.
11.
Starly
,
B.
,
Lau
,
A.
,
Sun
,
W.
,
Lau
,
W.
, and
Bradbury
,
T.
,
2005
, “
Direct Slicing of STEP Based NURBS Models for Layered Manufacturing
,”
Comput. Aided Des.
,
37
(
4
), pp.
387
397
.
12.
Sun
,
S.
,
Chiang
,
H.
, and
Lee
,
M.
,
2007
, “
Adaptive Direct Slicing of a Commercial CAD Model for Use in Rapid Prototyping
,”
Int. J. Adv. Manuf. Technol.
,
34
(
7
), pp.
689
701
.
13.
Tata
,
K.
,
Fadel
,
G.
,
Bagchi
,
A.
, and
Aziz
,
N.
,
1998
, “
Efficient Slicing for Layered Manufacturing
,”
Rapid Prototyping J.
,
4
(
4
), pp.
151
167
.
14.
Liao
,
Y.-S.
, and
Chiu
,
Y.-Y.
,
2001
, “
A New Slicing Procedure for Rapid Prototyping Systems
,”
Int. J. Adv. Manuf. Technol.
,
18
(
8
), pp.
579
585
.
15.
Rock
,
S. J.
, and
Wozny
,
M. J.
,
1991
, “
Utilizing Topological Information to Increase Scan Vector Generation Efficiency
,”
International Solid Freeform Fabrication Symposium
, pp.
28
36
.
16.
Rock
,
S. J.
, and
Wozny
,
M. J.
,
1992
, “
Generating Topological Information From a “Bucket of Facets
,” ”
International Solid Freeform Fabrication Symposium
, pp.
251
259
.
17.
McMains
,
S.
, and
Séquin
,
C.
,
1999
, “
A Coherent Sweep Plane Slicer for Layered Manufacturing
,” 5th
ACM
Symposium on Solid Modeling and Applications
, pp.
285
295
.
18.
Praun
,
E.
, and
Hoppe
,
H.
,
2003
, “
Spherical Parametrization and Remeshing
,”
SIGGRAPH
, ACM, pp.
340
349
.
19.
Praun
,
E.
,
Sweldens
,
W.
, and
Schröder
,
P.
,
2001
, “
Consistent Mesh Parameterizations
,”
SIGGRAPH
, ACM, pp.
179
184
.
20.
Schreiner
,
J.
,
Asirvatham
,
A.
,
Praun
,
E.
, and
Hoppe
,
H.
,
2004
, “
Inter-Surface Mapping
,”
ACM Trans. Graphics
,
23
(
3
), pp.
870
877
.
21.
Kraevoy
,
V.
, and
Sheffer
,
A.
,
2004
, “
Cross-Parameterization and Compatible Remeshing of 3D Models
,”
ACM Trans. Graphics
,
23
(
3
), pp.
861
869
.
22.
Pietroni
,
N.
,
Tarini
,
M.
, and
Cignoni
,
P.
,
2010
, “
Almost Isometric Mesh Parameterization Through Abstract Domains
,”
IEEE Trans. Visualization Comput. Graphics
,
16
(
4
), pp.
621
635
.
23.
Kwok
,
T.-H.
,
Zhang
,
Y.
, and
Wang
,
C. C. L.
,
2012
, “
Constructing Common Base Domain by Cues From Voronoi Diagram
,”
Gr. Models
,
74
(
4
), pp.
152
163
.
24.
Kwok
,
T.-H.
,
Zhang
,
Y.
, and
Wang
,
C. C. L.
,
2012
, “
Efficient Optimization of Common Base Domains for Cross Parameterization
,”
IEEE Trans. Visualization Comput. Graphics
,
18
(
10
), pp.
1678
1692
.
25.
Chu
,
C.-H.
,
Tsai
,
Y.-T.
,
Wang
,
C. C. L.
, and
Kwok
,
T.-H.
,
2010
, “
Exemplar-Based Statistical Model for Semantic Parametric Design of Human Body
,”
Comput. Ind.
,
61
(
6
), pp.
541
549
.
26.
Kwok
,
T.-H.
,
Yeung
,
K.-Y.
, and
Wang
,
C. C. L.
,
2014
, “
Volumetric Template Fitting for Human Body Reconstruction From Incomplete Data
,”
J. Manuf. Syst.
,
33
(
4
), pp.
678
689
.
27.
Floater
,
M.
,
1997
, “
Parametrization and Smooth Approximation of Surface Triangulations
,”
Comput. Aided Geom. Des.
,
14
(
3
), pp.
231
250
.
28.
Floater
,
M.
,
2003
, “
Mean Value Coordinates
,”
Comput. Aided Geom. Des.
,
20
(
1
), pp.
19
27
.
29.
Ju
,
T.
,
Schaefer
,
S.
, and
Warren
,
J.
,
2005
, “
Mean Value Coordinates for Closed Triangular Meshes
,”
ACM Trans. Graphics
,
24
(
3
), pp.
561
566
.
You do not currently have access to this content.