Controlling and accomplishing the desired functional material composition in a heterogeneous object (HO) is a close loop process and requires frequent remodeling-and-analysis. Thus, flexibility and capability to efficiently modify the existing CAD model of a heterogeneous object are essential aspects of heterogeneous object modeling. The current work unfolds such capabilities of the developed material convolution surface approach. The geometric and material control features associated with the approach demonstrate the potential to modify existing material-distributions to remodel complex material variations and assure rapid heterogeneous composition adaptations. Convolution material primitives (CMPs), material potential functions, and heterogeneous and grading enclosure are manipulated to achieve desired material compositions across the heterogeneous region. The manipulation process for each control feature has been established. A few examples of modeling and modifying complex material-distributions have been reported for the validation of work.

References

References
1.
Feito
,
F. R.
, and
Torres
,
J. C.
,
1997
, “
Inclusion Test for General Polyhedral
,”
Comput. Graphics
,
21
(
1
), pp.
23
30
.
2.
Kumar
,
V.
, and
Dutta
,
D.
,
1997
, “
An Approach to Modeling and Representation of Heterogeneous Objects
,”
ASME J. Mech. Des.
,
120
(4), pp.
659
667
.
3.
Kumar
,
V.
, and
Dutta
,
D.
,
1997
, “
An Approach to Modeling Multi-Material Objects
,”
Fourth ACM Symposium on Solid Modeling and Applications
, pp.
336
345
.
4.
Jackson
,
T. R.
,
Liu
,
H.
,
Patrikalakis
,
N. M.
,
Sachs
,
E. M.
, and
Cima
,
M. J.
,
1999
, “
Modeling and Designing Functionally Graded Material Components for Fabrication With Local Composition Control
,”
Mater. Des.
,
20
(
2–3
), pp.
63
75
.
5.
Jackson
,
T. R.
,
2000
, “
Analysis of Functionally Graded Material Object Representation Methods
,” Ph.D. thesis, Massachusetts Institute of Technology, Cambridge, MA.
6.
Liu
,
H.
,
Maekawa
,
T.
,
Patrikalakis
,
N. M.
,
Sachs
,
E. M.
, and
Cho
,
W.
,
2004
, “
Methods for Feature-Based Design of Heterogeneous Solids
,”
Comput.-Aided Des.
,
36
(
12
), pp.
1141
1159
.
7.
Chiu
,
W. K.
, and
Tan
,
S. T.
,
2000
, “
Multiple Material Objects: From CAD Representation to Data Format for Rapid Prototyping
,”
Comput.-Aided Des.
,
32
(
12
), pp.
707
717
.
8.
Siu
,
Y. K.
, and
Tan
,
S. T.
,
2000
, “
Source-Based Heterogeneous Solid Modeling
,”
Comput.-Aided Des.
,
34
(
1
), pp.
41
55
.
9.
Wang
,
M. Y.
, and
Wang
,
X. M.
,
2005
, “
A Level-Set Based Variational Method for Design and Optimization of Heterogeneous Objects
,”
Comput.-Aided Des.
,
37
(
3
), pp.
321
337
.
10.
Tsukanov
,
I.
, and
Shapiro
,
V.
,
2003
, “
Mesh Free Modeling and Analysis of Physical Fields in Heterogeneous Media
,”
Adv. Comput. Math.
,
23
(
1–2
), pp.
95
124
.
11.
Kou
,
X. Y.
, and
Tan
,
S. T.
,
2004
, “
A Hierarchical Representation for Heterogeneous Object Modeling
,”
Comput.-Aided Des.
,
37
(
3
), pp.
307
319
.
12.
Gupta
,
V.
,
Kasana
,
K. S.
, and
Tandon
,
P.
,
2012
, “
Reference Based Geometric Modeling for Heterogeneous Objects
,”
Comput.-Aided Des. Appl.
,
9
(
2
), pp.
155
165
.
13.
Gupta
,
V.
,
Kasana
,
K. S.
, and
Tandon
,
P.
,
2010
, “
CAD Modeling, Algorithm Design, and System Structure for Rapid Prototyping of Heterogeneous Objects
,”
Int. J. Comput. Appl. Eng.
, Technol. Sci.,
2
(
2
), pp.
299
303
.
14.
Gupta
,
V.
,
Kasana
,
K. S.
, and
Tandon
,
P.
,
2010
, “
Computer Aided Design Modeling for Heterogeneous Objects
,”
Int. J. Comput. Sci. Issues
,
7
(
5
), pp.
31
38
.
15.
Gupta
,
V.
,
Bajpai
,
V. K.
, and
Tandon
,
P.
,
2014
, “
Slice Generation and Data Retrieval Algorithm for Rapid Manufacturing of Heterogeneous Objects
,”
Comput.-Aided Des. Appl.
,
11
(
3
), pp.
255
262
.
16.
Davis
,
J. D.
, Kutzer, M. D., and Chirikjian, G. S.,
2016
, “
Algorithms for Multilayer Conformal Additive Manufacturing
,”
ASME J. Comput. Inf. Sci. Eng.
,
16
(
2
), p. 021003.
17.
Kwok
,
T.-H.
, Ye, H., Chen, Y., Zhou, C., and Xu, W.,
2016
, “
Mass Customization: Reuse of Digital Slicing for Additive Manufacturing
,”
ASME J. Comput. Inf. Sci. Eng.
(Accepted).
18.
Comotti
,
C.
, Regazzoni, D., Rizzi, C., and Vitali, A.,
2016
, “
Additive Manufacturing to Advance Functional Design: An Application in the Medical Field
,”
ASME J. Comput. Inf. Sci. Eng.
(Accepted).
19.
Qian
,
X.
, and
Dutta
,
D.
,
2004
, “
Feature-Based Design for Heterogeneous Objects
,”
Comput.-Aided Des.
,
36
(
12
), pp.
1263
1278
.
20.
Qian
,
X.
, and
Dutta
,
D.
,
2003
, “
Physics-Based Modeling for Heterogeneous Object
,”
Trans. ASME
,
125
(
3
), pp.
416
427
.
21.
Yang
,
P.
, and
Qian
,
X.
,
2007
, “
A B-Spline-Based Approach to Heterogeneous Objects Design and Analysis
,”
Comput.-Aided Des.
,
39
(
2
), pp.
95
111
.
22.
Gupta
,
V.
, and
Tandon
,
P.
,
2015
, “
Heterogeneous Object Modeling With Material Convolution Surfaces
,”
Comput.-Aided Des.
,
62
, pp.
236
247
.
You do not currently have access to this content.